975 resultados para auditory-motor interaction
Resumo:
The effective atomic number is widely employed in radiation studies, particularly for the characterisation of interaction processes in dosimeters, biological tissues and substitute materials. Gel dosimeters are unique in that they comprise both the phantom and dosimeter material. In this work, effective atomic numbers for total and partial electron interaction processes have been calculated for the first time for a Fricke gel dosimeter, five hypoxic and nine normoxic polymer gel dosimeters. A range of biological materials are also presented for comparison. The spectrum of energies studied spans 10 keV to 100 MeV, over which the effective atomic number varies by 30 %. The effective atomic numbers of gels match those of soft tissue closely over the full energy range studied; greater disparities exist at higher energies but are typically within 4 %.
Resumo:
This workshop explores innovative approaches to understanding and cultivating sustainable food culture in urban environments via human-computer-interaction (HCI) design and ubiquitous technologies. We perceive the city as an intersecting network of people, place, and technology in constant transformation. Our 2009 OZCHI workshop, Hungry 24/7? HCI Design for Sustainable Food Culture, opened a new space for discussion on this intersection amongst researchers and practitioners from diverse backgrounds including academia, government, industry, and non-for-profit organisations. Building on the past success, this new instalment of the workshop series takes a more refined view on mobile human-food interaction and the role of interactive media in engaging citizens to cultivate more sustainable everyday human-food interactions on the go. Interactive media in this sense is distributed, pervasive, and embedded in the city as a network. The workshop addresses environmental, health, and social domains of sustainability by bringing together insights across disciplines to discuss conceptual and design approaches in orchestrating mobility and interaction of people and food in the city as a network of people, place, technology, and food.
Resumo:
To understand human behavior, it is important to know under what conditions people deviate from selfish rationality. This study explores the interaction of natural survival instincts and internalized social norms using data on the sinking of the Titanic and the Lusitania. We show that time pressure appears to be crucial when explaining behavior under extreme conditions of life and death. Even though the two vessels and the composition of their passengers were quite similar, the behavior of the individuals on board was dramatically different. On the Lusitania, selfish behavior dominated (which corresponds to the classical homo oeconomicus); on the Titanic, social norms and social status (class) dominated, which contradicts standard economics. This difference could be attributed to the fact that the Lusitania sank in 18 minutes, creating a situation in which the short-run flight impulse dominates behavior. On the slowly sinking Titanic (2 hours, 40 minutes), there was time for socially determined behavioral patterns to re-emerge. To our knowledge, this is the first time that these shipping disasters have been analyzed in a comparative manner with advanced statistical (econometric) techniques using individual data of the passengers and crew. Knowing human behavior under extreme conditions allows us to gain insights about how varied human behavior can be depending on differing external conditions.
Resumo:
The integration of computer technologies into everyday classroom life continues to provide pedagogical challenges for school systems, teachers and administrators. Data from an exploratory case study of one teacher and a multiage class of children in the first years of schooling in Australia show that when young children are using computers for set tasks in small groups, they require ongoing support from teachers, and to engage in peer interactions that are meaningful and productive. Classroom organization and the nature of teacher-child talk are key factors in engaging children in set tasks and producing desirable learning and teaching outcomes.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
Fibre Bragg Grating (FBG) sensors have been installed along an existing line for the purposes of train detection and weight measurement. The results show fair accuracy and high resolution on the vertical force acted on track when the train wheels are rolling upon. While the sensors are already in place and data is available, further applications beyond train detection are explored. This study presents the analysis on the unique signatures from the data collected to characterise wheel-rail interaction for rail defect detection. Focus of this first stage of work is placed on the repeatability of signals from the same wheel-rail interactions while the rail is in healthy state. Discussions on the preliminary results and hence the feasibility of this condition monitoring application, as well as technical issues to be addressed in practice, are given.
Resumo:
Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm-3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm-3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
Presented as part of the Sampled Festival at Sadlers Wells UK in January 2009, PIPP #2 continues the exploration of the first installation (PIPP #1 Leeds) and asks audiences to connect with an interactive work presented in the foyer of a major dance festival. Literally choreographing their own dances on the walls of the venue, pedestrians re-connect with the architectural surrounds generating unique memories of self.
Resumo:
The Arabidopsis thaliana NPR1 has been shown to be a key regulator of gene expression during the onset of a plant disease-resistance response known as systemic acquired resistance. The npr1 mutant plants fail to respond to systemic acquired resistance-inducing signals such as salicylic acid (SA), or express SA-induced pathogenesis-related (PR) genes. Using NPR1 as bait in a yeast two-hybrid screen, we identified a subclass of transcription factors in the basic leucine zipper protein family (AHBP-1b and TGA6) and showed that they interact specifically in yeast and in vitro with NPR1. Point mutations that abolish the NPR1 function in A. thaliana also impair the interactions between NPR1 and the transcription factors in the yeast two-hybrid assay. Furthermore, a gel mobility shift assay showed that the purified transcription factor protein, AHBP-1b, binds specifically to an SA-responsive promoter element of the A. thaliana PR-1 gene. These data suggest that NPR1 may regulate PR-1 gene expression by interacting with a subclass of basic leucine zipper protein transcription factors.
Resumo:
As more and more information is available on the Web finding quality and reliable information is becoming harder. To help solve this problem, Web search models need to incorporate users’ cognitive styles. This paper reports the preliminary results from a user study exploring the relationships between Web users’ searching behavior and their cognitive style. The data was collected using a questionnaire, Web search logs and think-aloud strategy. The preliminary findings reveal a number of cognitive factors, such as information searching processes, results evaluations and cognitive style, having an influence on users’ Web searching behavior. Among these factors, the cognitive style of the user was observed to have a greater impact. Based on the key findings, a conceptual model of Web searching and cognitive styles is presented.
Resumo:
With an increasing body of literature linking the human resource management and marketing fields, one area receiving increased academic attention is how an organisation’s corporate reputation can be managed to attract potential recruits and shape their employment expectations through their psychological contracts. This paper seeks to enhance current models which focus on the interrelationship of corporate reputation and psychological contract theory. It is argued that a number of factors need to be considered in order the build a firmer foundation for such a theory. Firstly, a common understanding of the psychological contract needs to be established such that the focus on either expectations or promises is clarified. Secondly, the included components of the psychological contract need to be considered in light of their empirical founding and their relationship with one another. Thirdly, the interrelationship of corporate reputation, employer branding, identity and image needs to be explicated within the context of how they both influence and interrelate with the psychological contract. The final consideration surrounds the opportunity for potential employees to be considered within the corporate reputation literature as a significant stakeholder group.