973 resultados para auditory EEG
Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging.
Resumo:
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
Resumo:
The kitten's auditory cortex (including the first and second auditory fields AI and AII) is known to send transient axons to either ipsi- or contralateral visual areas 17 and 18. By the end of the first postnatal month the transitory axons, but not their neurons of origin, are eliminated. Here we investigated where these neurons project after the elimination of the transitory axon. Eighteen kittens received early (postnatal day (pd) 2 - 5) injections of long lasting retrograde fluorescent traces in visual areas 17 and 18 and late (pd 35 - 64) injections of other retrograde fluorescent tracers in either hemisphere, mostly in areas known to receive projections from AI and AII in the adult cat. The middle ectosylvian gyrus was analysed for double-labelled neurons in the region corresponding approximately to AI and AII. Late injections in the contralateral (to the analysed AI, AII) hemisphere including all of the known auditory areas, as well as some visual and 'association' areas, did not relabel neurons which had had transient projections to either ipsi- or contralateral visual areas 17 - 18. Thus, AI and AII neurons after eliminating their transient juvenile projections to visual areas 17 and 18 do not project to the other hemisphere. In contrast, relabelling was obtained with late injections in several locations in the ipsilateral hemisphere; it was expressed as per cent of the population labelled by the early injections. Few neurons (0 - 2.5%) were relabelled by large injections in the caudal part of the posterior ectosylvian gyrus and the adjacent posterior suprasylvian sulcus (areas DP, P, VP). Multiple injections in the middle ectosylvian gyrus relabelled a considerably larger percentage of neurons (13%). Single small injections in the middle ectosylvian gyrus (areas AI, AII), the caudal part of the anterior ectosylvian gyrus and the rostral part of the posterior ectosylvian gyrus relabelled 3.1 - 7.0% of neurons. These neurons were generally near (<2.0 mm) the outer border of the late injection sites. Neurons with transient projections to ipsi- or contralateral visual areas 17 and 18 were relabelled in similar proportions by late injections at any given location. Thus, AI or AII neurons which send a transitory axon to ipsi- or contralateral visual areas 17 and 18 are most likely to form short permanent cortical connections. In that respect, they are similar to medial area 17 neurons that form transitory callosal axons and short permanent axons to ipsilateral visual areas 17 and 18.
Resumo:
INTRODUCTION: Electroencephalography (EEG) has a central role in the outcome prognostication in subjects with anoxic/hypoxic encephalopathy following a cardiac arrest (CA). Continuous EEG monitoring (cEEG) has been consistently developed and studied; however, its yield as compared to repeated standard EEG (sEEG) is unknown. METHODS: We studied a prospective cohort of comatose adults treated with therapeutic hypothermia (TH) after a CA. cEEG data regarding background activity and epileptiform components were compared to two 20 minute sEEG extracted from the cEEG recording (one during TH, and one in early normothermia). RESULTS: In this cohort, 34 recordings were studied. During TH, the agreement between cEEG and sEEG was 97.1% (95% CI: 84.6 - 99.9%) for background discontinuity and reactivity evaluation, while it was 94.1% (95% CI 80.3 - 99.2%) regarding epileptiform activity. In early normothermia, we did not find any discrepancies. Thus, concordance was very good during TH (kappa 0.83), and optimal during normothermia (kappa=1). The median delay between CA and the first EEG reactivity testing was 18 hours (range: 4.75 - 25) for patients with perfect agreement and 10 hours (range: 5.75 - 10.5) for the three patients in whom there were discordant findings (P=0.02, Wilcoxon). CONCLUSION: Standard intermittent EEG has comparable performance than continuous EEG both for variables important for outcome prognostication (EEG reactivity) and identification of epileptiform transients in this relatively small sample of comatose survivors of CA. This finding has an important practical implication, especially for centers where EEG resources are limited.
Resumo:
Multisensory interactions are observed in species from single-cell organisms to humans. Important early work was primarily carried out in the cat superior colliculus and a set of critical parameters for their occurrence were defined. Primary among these were temporal synchrony and spatial alignment of bisensory inputs. Here, we assessed whether spatial alignment was also a critical parameter for the temporally earliest multisensory interactions that are observed in lower-level sensory cortices of the human. While multisensory interactions in humans have been shown behaviorally for spatially disparate stimuli (e.g. the ventriloquist effect), it is not clear if such effects are due to early sensory level integration or later perceptual level processing. In the present study, we used psychophysical and electrophysiological indices to show that auditory-somatosensory interactions in humans occur via the same early sensory mechanism both when stimuli are in and out of spatial register. Subjects more rapidly detected multisensory than unisensory events. At just 50 ms post-stimulus, neural responses to the multisensory 'whole' were greater than the summed responses from the constituent unisensory 'parts'. For all spatial configurations, this effect followed from a modulation of the strength of brain responses, rather than the activation of regions specifically responsive to multisensory pairs. Using the local auto-regressive average source estimation, we localized the initial auditory-somatosensory interactions to auditory association areas contralateral to the side of somatosensory stimulation. Thus, multisensory interactions can occur across wide peripersonal spatial separations remarkably early in sensory processing and in cortical regions traditionally considered unisensory.
Resumo:
Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy control subjects at no-task, eyes-closed condition. The cross-correlation of artifact-free EEGs was used to construct brain functional networks. The extracted networks were then tested for their synchronization properties by calculating the eigenratio of the Laplacian matrix of the connection graph, i.e., the largest eigenvalue divided by the second smallest one. In AD patients, we found an increase in the eigenratio, i.e., a decrease in the synchronizability of brain networks across delta, alpha, beta, and gamma EEG frequencies within the wide range of network costs. The finding indicates the destruction of functional brain networks in early AD.
Resumo:
INTRODUCTION: Continuous EEG (cEEG) is increasingly used to monitor brain function in neuro-ICU patients. However, its value in patients with coma after cardiac arrest (CA), particularly in the setting of therapeutic hypothermia (TH), is only beginning to be elucidated. The aim of this study was to examine whether cEEG performed during TH may predict outcome. METHODS: From April 2009 to April 2010, we prospectively studied 34 consecutive comatose patients treated with TH after CA who were monitored with cEEG, initiated during hypothermia and maintained after rewarming. EEG background reactivity to painful stimulation was tested. We analyzed the association between cEEG findings and neurologic outcome, assessed at 2 months with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). RESULTS: Continuous EEG recording was started 12 ± 6 hours after CA and lasted 30 ± 11 hours. Nonreactive cEEG background (12 of 15 (75%) among nonsurvivors versus none of 19 (0) survivors; P < 0.001) and prolonged discontinuous "burst-suppression" activity (11 of 15 (73%) versus none of 19; P < 0.001) were significantly associated with mortality. EEG seizures with absent background reactivity also differed significantly (seven of 15 (47%) versus none of 12 (0); P = 0.001). In patients with nonreactive background or seizures/epileptiform discharges on cEEG, no improvement was seen after TH. Nonreactive cEEG background during TH had a positive predictive value of 100% (95% confidence interval (CI), 74 to 100%) and a false-positive rate of 0 (95% CI, 0 to 18%) for mortality. All survivors had cEEG background reactivity, and the majority of them (14 (74%) of 19) had a favorable outcome (CPC 1 or 2). CONCLUSIONS: Continuous EEG monitoring showing a nonreactive or discontinuous background during TH is strongly associated with unfavorable outcome in patients with coma after CA. These data warrant larger studies to confirm the value of continuous EEG monitoring in predicting prognosis after CA and TH.
Resumo:
Alzheimer's disease (AD) disrupts functional connectivity in distributed cortical networks. We analyzed changes in the S-estimator, a measure of multivariate intraregional synchronization, in electroencephalogram (EEG) source space in 15 mild AD patients versus 15 age-matched controls to evaluate its potential as a marker of AD progression. All participants underwent 2 clinical evaluations and 2 EEG recording sessions on diagnosis and after a year. The main effect of AD was hyposynchronization in the medial temporal and frontal regions and relative hypersynchronization in posterior cingulate, precuneus, cuneus, and parietotemporal cortices. However, the S-estimator did not change over time in either group. This result motivated an analysis of rapidly progressing AD versus slow-progressing patients. Rapidly progressing AD patients showed a significant reduction in synchronization with time, manifest in left frontotemporal cortex. Thus, the evolution of source EEG synchronization over time is correlated with the rate of disease progression and should be considered as a cost-effective AD biomarker.
Resumo:
OBJECTIVE: Positive occipital sharp transient of the sleep (POSTS) are considered a normal variant of non-REM sleep EEG. We describe a small series of patients with asymmetric POSTS and ipsilateral abnormal EEG findings. METHODS: Over a period of 30 weeks, we prospectively observed five consecutive subjects with strictly unilateral POSTS associated with ispilateral electrographic abnormalities. They represent 0.4% of all EEG performed over the same time lapse (5/1130), including inpatients, outpatients and long-term monitoring. RESULTS: Four women and one boy suffering from epileptic seizures (aged 7-76 years old) had unilateral POSTS, occurring only on the right side, during light sleep. They also presented ipsilateral epileptiform abnormalities. CONCLUSION: The fact that POSTS were asymmetric and found only on the same side as the abnormalities raises the question whether these transients should still be considered physiological or could be interpreted at times as markers of underlying electrical abnormalities, pointing to an increased cortical excitability on the more active side. Although larger samples are needed to confirm our preliminary results, this case study questions the interpretation of POSTS as a uniformly normal variant.
Resumo:
Glutathione (GSH) dysregulation at the gene, protein, and functional levels has been observed in schizophrenia patients. Together with disease-like anomalies in GSH deficit experimental models, it suggests that such redox dysregulation can play a critical role in altering neural connectivity and synchronization, and thus possibly causing schizophrenia symptoms. To determine whether increased GSH levels would modulate EEG synchronization, N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients in a randomized, double-blind, crossover protocol for 60 days, followed by placebo for another 60 days (or vice versa). We analyzed whole-head topography of the multivariate phase synchronization (MPS) for 128-channel resting-state EEGs that were recorded at the onset, at the point of crossover, and at the end of the protocol. In this proof of concept study, the treatment with NAC significantly increased MPS compared to placebo over the left parieto-temporal, the right temporal, and the bilateral prefrontal regions. These changes were robust both at the group and at the individual level. Although MPS increase was observed in the absence of clinical improvement at a group level, it correlated with individual change estimated by Liddle's disorganization scale. Therefore, significant changes in EEG synchronization induced by NAC administration may precede clinically detectable improvement, highlighting its possible utility as a biomarker of treatment efficacy. TRIAL REGISTRATION: ClinicalTrials.gov NCT01506765.
Resumo:
Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The spatial resolution capabilities of fMRI have since advanced, and recent reports from our labs and several others demonstrate the reliability of tonotopic mapping in human auditory cortex. Here we review the wide range of stimulus procedures and analysis methods that have been used to successfully map tonotopy in human auditory cortex. We point out that recent studies provide a remarkably consistent view of human tonotopic organisation, although the interpretation of the maps continues to vary. In particular, there remains controversy over the exact orientation of the primary gradients with respect to Heschl's gyrus, which leads to different predictions about the location of human A1, R, and surrounding fields. We discuss the development of this debate and argue that literature is converging towards an interpretation that core fields A1 and R fold across the rostral and caudal banks of Heschl's gyrus, with tonotopic gradients laid out in a distinctive V-shaped manner. This suggests an organisation that is largely homologous with non-human primates. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Resumo:
Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.
Resumo:
The cortical auditory fields of the two hemispheres are interconnected via the corpus callosum. We have investigated the topographical arrangement of auditory callosal axons in the cat. Following circumscribed biocytin injections in the primary (AI), secondary (AII), anterior (AAF) and posterior (PAF) auditory fields, labelled axons have been found in the posterior two-thirds of the corpus callosum. Callosal axons labelled by small individual cortical injections did not form a tight bundle at the callosal midsagittal plane but spread over as much as one-third of the corpus callosum. Axons originating from different auditory fields were roughly topographically ordered, reflecting to some extent the rostro-caudal position of the field of origin. Axons from AAF crossed on average more rostrally than axons from AI; the latter crossed more rostrally than axons from PAF and AII. Callosal axons originating in a discrete part of the cortex travelled first in a relatively tight bundle to the telo-diencephalic junction and then dispersed progressively. In conclusion, the cat corpus callosum does not contain a sector reserved for auditory axons, nor a strictly topographically ordered auditory pathway. This observation is of relevance to neuropsychological and neuropathological observations in man.