906 resultados para alignment-free methods
Resumo:
Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.
Resumo:
We present reaction free energy calculations using the adaptive buffered force mixing quantum mechanics/molecular mechanics (bf-QM/MM) method. The bf-QM/MM method combines nonadaptive electrostatic embedding QM/MM calculations with extended and reduced QM regions to calculate accurate forces on all atoms, which can be used in free energy calculation methods that require only the forces and not the energy. We calculate the free energy profiles of two reactions in aqueous solution: the nucleophilic substitution reaction of methyl chloride with a chloride anion and the deprotonation reaction of the tyrosine side chain. We validate the bf-QM/MM method against a full QM simulation, and show that it correctly reproduces both geometrical properties and free energy profiles of the QM model, while the electrostatic embedding QM/MM method using a static QM region comprising only the solute is unable to do so. The bf-QM/MM method is not explicitly dependent on the details of the QM and MM methods, so long as it is possible to compute QM forces in a small region and MM forces in the rest of the system, as in a conventional QM/MM calculation. It is simple, with only a few parameters needed to control the QM calculation sizes, and allows (but does not require) a varying and adapting QM region which is necessary for simulating solutions.
Resumo:
The development of infrastructure in major cities often involves tunnelling, which can cause damage to existing structures. Therefore, these projects require a careful prediction of the risk of settlement induced damage. The simplified approach of current methods cannot account for three-dimensional structural aspects of buildings, which can result in an inaccurate evaluation of damage. This paper investigates the effect of the building alignment with the tunnel axis on structural damage. A three-dimensional, phased, fully coupled finite element model with non-linear material properties is used as a tool to perform a parametric study. The model includes the simulation of the tunnel construction process, with the tunnel located adjacent to a masonry building. Three different type of settlements are included (sagging, hogging and a combination of them), with seven different increasing angles of the building with respect to the tunnel axis. The alignment parameter is assessed, based on the maximum occurring crack width, measured in the building. Results show a significant dependency of the final damage on the building and tunnel alignment.
Resumo:
A simple procedure for obtaining a background-free backscattering spectrum of a light-mass film on a heavy-mass substrate by a normal incidence/grazing exit geometry has been described. Using this method such films can be aligned rapidly and accurately, and the impurity or defect information on the films can be obtained without need for realignment. Example is given from MeV Li-3+ analysis of a deposited film of Si on a single crystal substrate of yttria-stabilized, cubic zirconia.
Resumo:
Current based microscopic defect analysis methods such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) have been further developed in accordance with the need for the defect analysis of highly irradiated (Phi(n) > 10(13) n/cm(2)) high resistivity silicon detectors. The new I-DLTS/TSC system has a temperature range of 8 K less than or equal to T less than or equal to 450 K and a high sensitivity that can detect a defect concentration of less than 10(10)/cm(3) (background noise as low as 10 fA). A new filling method using different wavelength laser illumination has been applied, which is more efficient and suitable than the traditional voltage pulse filling. It has been found that the filling of a defect level depends on such factors as the total concentration of free carriers generated or injected, the penetration length of the laser (laser wavelength), the temperature at which the filling is taking place, as well as the decay time after the filling (but before the measurement). The mechanism of the defect filling can be explained by the competition between trapping and detrapping of defect levels, possible capture cross section temperature dependence, and interaction among various defect levels in terms of charge transferring. Optimum defect filling conditions have been suggested for highly irradiated high resistivity silicon detectors.
Resumo:
An improved free energy approach Lattice Boltzmann model(LBM) is proposed by introducing a forcing term instead of the pressure tensor. This model can reach the proper thermodynamic equilibrium after enough simulation time. On the basis of this model, the phase separation in binary polymer mixtures is studied by applying a Flory-Huggins-type free energy. The numerical results show good agreement with the analytic coexistence curve. This model can also be used to study the coarsening of microdomains in binary polymer mixtures at the early and intermediate stages.
Resumo:
In order to understand the coarsening of microdomains in symmetric diblock copolymers at the late stage, a model for block copolymers is proposed. By incorporating the self consistent field theory with the free energy approach Lattice Boltzmann model, hydrodynamic interactions can be considered. Compared with models based on Ginzburg-Landau free energy, this model does not employ phenomenological free energies to describe systems. The model is verified by comparing the simulation results obtained using this method with those of a dynamical version of the self consistent mean field theory. After that,the growth exponents of the characteristic domain size for symmetric block copolymers at late stage are studied. It is found that the viscosity of the system affects the growth exponents greatly, although the growth exponents are all less than 1/3 Furthermore, the relations between the growth exponent, the interaction parameter and the chain length are studied.
Resumo:
Supported lipid membranes consisting of self-assembled alkanethiol and lipid monolayers on gold substrates could be produced by three different deposition methods: the Langmuir-Blodgett (L-B) technique, the painted method, and the paint-freeze method, By using cyclic voltammetry, chronoamperometry/chronocoulometry and a.c. impedance measurements, we demonstrated that lipid membranes prepared by these three deposition methods had obvious differences in specific capacitance, resistance and thickness. The specific capacitance of lipid membranes prepared by depositing an L-B monolayer on the alkanethiol alkylated surfaces was 0.53 mu Fcm(-2), 0.44 mu Fcm(-2) by the painted method and 0.68 mu Fcm(-2) by the paint-freeze method. The specific conductivity of lipid membranes prepared by the L-B method was over three times lower than that of the painted lipid membranes, while that of the paint-freeze method was the lowest. The difference among the three types of lipid membranes was ascribed to the influence of the organic solvent in lipid films and the changes in density of the films. The lipid membranes prepared by the usual painted method contained a trace amount of the organic solvent. The organic solvent existing in the hydrocarbon core of the membrane reduced the density of the membrane and increased the thickness of the membrane. The membrane prepared by depositing an L-B monolayer containing no solvent had higher density and the lowest fluidity, and the thickness of the membrane was smaller. The lipid membrane prepared by the paint-freeze method changed its structure sharply at the lower temperature. The organic solvent was frozen out of the membrane while the density of the membrane increased greatly. All these caused the membrane to exist in a ''tilted'' state and the thickness of this membrane was the smallest. The lipid membrane produced by the paint-freeze method was a membrane not containing organic solvent. This method was easier in manipulation and had better reproducibility than that of the usual painting method and the method of forming free-standing lipid film. The solvent-free membrane had a long lifetime and a higher mechanical stability. This model membrane would be useful in many areas of scientific research.
Resumo:
Attenuations of different types of gas hydrate cementation in fluid-saturated porous solids are discussed. The factors affecting estimation of gas hydrate and free gas saturation are analyzed. It is suggested that porosity of sediment, the P wave velocity model and methods of calculating elastic modulus are key factors in the estimation of gas hydrate and free gas saturations. Attenuation of gas hydrate-bearing sediment is closely related with the cementation types of gas hydrate. Negative anomalies of quality factors indicate that gas hydrate deposits away from grain as part of fluid. Positive anomalies of the quality factors indicate that gas hydrate contacts with solid and changes the elastic modulus of matrix. Low frequency velocity and high frequency velocity models are used to estimate gas hydrate and free gas saturation in the Blake Ridge area according to the well log data of the hole 995 in ODP leg 164. The gas hydrate saturation obtained by low frequency velocity is 10% similar to 20% of the pore space and free gas saturation is 0.5% similar to 1% of the pore space. The gas hydrate saturation obtained by high frequency velocity is 5% similar to 10% of the pore space and free gas saturation is 1% similar to 2% of the pore space.
Resumo:
Shrimps Litopenaeus vannamei with initial body weight of 2.108 +/- 0.036 g were sampled for specific growth rates (SGR) and body color measurements for 50 days under different light sources (incandescent lamp, IL; cool-white fluorescent lamp, FL; metal halide lamp, MHL; and control without lamp) and different illumination methods (illumination only in day, IOD, and illumination day and night, IDN). Body color of L. vannamei was measured according to the free astaxanthin concentration (FAC) of shrimp. The SGR, food intake (FI), feed conversion efficiency (FCE) and FAC of shrimps showed significant differences among the experimental treatment groups (P < 0.05). Maximum and minimum SGR occurred under IOD by MHL and IDN by FL, respectively (difference 56.34%). The FI of shrimp for the control group did not rank lowest among treatments, confirming that shrimp primarily use scent, not vision, to search for food. FI and FCE of shrimps were both the lowest among treatment groups under IDN by FL and growth was slow, thus FL is not a preferred light source for shrimp culture. Under IOD by MHL, shrimps had the highest FCE and the third highest FI among treatment groups ensuring rapid growth. FAC of shrimp were about 3.31 +/- 0.20 mg/kg. When under IOD by MHL and IDN by FL, FAC was significantly higher than the other treatments (P < 0.05). To summarize, when illuminated by MHL, L. vannamei had not only vivid body color due to high astaxanthin concentration but also rapid growth. Therefore, MHL is an appropriate indoor light source for shrimp super-intensive culture. SGR of shrimp was in significantly negative correlation to FAC of shrimp (P < 0.05). Thus, when FAC increased, SGR did not always follow, suggesting that the purpose of astaxanthin accumulation was not for growth promotion but for protection against intense light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The seed oil from Nitraria tangutorum samples was obtained by supercritical carbon dioxide extraction methods. The extraction parameters for this methodology, including pressure, temperature, particle size and extraction time, were optimized. The free fatty acids in the seed oil were separated with a pre-column derivation method and 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-p-toluenesulfonate (BDETS) as a labeling regent, followed by high-performance liquid chromatography (HPLC) with fluorescence detection. The target compounds were identified by mass spectrometry with atmospheric pressure chemical ionization (APCI in positive-ion mode). HPLC analysis shows that the main compositions of the seed oil samples were free fatty acids (FFAs) in high to low concentrations as follows: linoleic acid, oleic acid, hexadecanoic acid and octadecanoic acid. The assay detection limits (at signal-to-noise of 3:1) were 3.378-6.572 nmol/L. Excellent linear responses were observed, with correlation coefficients greater than 0.999. The facile BDETS derivatization coupled with mass spectrometry detection allowed the development of a highly sensitive method for analyzing free fatty acids in seed oil by supercritical CO2 extraction. The established method is highly efficient for seed oil extraction and extremely sensitive for fatty acid profile determination. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Similarly to protein folding, the association of two proteins is driven by a free energy funnel, determined by favorable interactions in some neighborhood of the native state. We describe a docking method based on stochastic global minimization of funnel-shaped energy functions in the space of rigid body motions (SE(3)) while accounting for flexibility of the interface side chains. The method, called semi-definite programming-based underestimation (SDU), employs a general quadratic function to underestimate a set of local energy minima and uses the resulting underestimator to bias further sampling. While SDU effectively minimizes functions with funnel-shaped basins, its application to docking in the rotational and translational space SE(3) is not straightforward due to the geometry of that space. We introduce a strategy that uses separate independent variables for side-chain optimization, center-to-center distance of the two proteins, and five angular descriptors of the relative orientations of the molecules. The removal of the center-to-center distance turns out to vastly improve the efficiency of the search, because the five-dimensional space now exhibits a well-behaved energy surface suitable for underestimation. This algorithm explores the free energy surface spanned by encounter complexes that correspond to local free energy minima and shows similarity to the model of macromolecular association that proceeds through a series of collisions. Results for standard protein docking benchmarks establish that in this space the free energy landscape is a funnel in a reasonably broad neighborhood of the native state and that the SDU strategy can generate docking predictions with less than 5 � ligand interface Ca root-mean-square deviation while achieving an approximately 20-fold efficiency gain compared to Monte Carlo methods.
Resumo:
Nearest neighbor classifiers are simple to implement, yet they can model complex non-parametric distributions, and provide state-of-the-art recognition accuracy in OCR databases. At the same time, they may be too slow for practical character recognition, especially when they rely on similarity measures that require computationally expensive pairwise alignments between characters. This paper proposes an efficient method for computing an approximate similarity score between two characters based on their exact alignment to a small number of prototypes. The proposed method is applied to both online and offline character recognition, where similarity is based on widely used and computationally expensive alignment methods, i.e., Dynamic Time Warping and the Hungarian method respectively. In both cases significant recognition speedup is obtained at the expense of only a minor increase in recognition error.
Resumo:
The Republic of Ireland became the first European country to implement nationwide smoke-free workplace legislation. Aims: To determine prevalence of smoking among bar workers and estimate the impact of the smoke-free workplace legislation on their smoking behaviour to that of a comparable general population sample. To approximate the influence of tobacco control measures on risk perception of second-hand smoke (SHS) among the general population. To explore the de-normalisation of smoking behaviour and the potential increased stigmatisation of smokers and their smoking. Methods: Prevalence estimates and behavioural changes were examined among a random sample of bar workers before and 1 year after the smoke-free legislation; comparisons made with a general population sub-sample. Changes in risk knowledge related to SHS exposure were based on general population data. Qualitative interviews were conducted among a purposive sample of smokers and non-smokers four years after the implementation of the legislation. Results: Smoking prevalence was extremely high among bar workers. Smoking prevalence dropped in bar workers and significantly among the general population 1 year post ban while cigarette consumption dropped significantly among bar workers. Disparity in knowledge between smokers and non-smoker of risk associated with SHS exposure reduced. Lack of understanding of the risk of ear infections in children posed by SHS exposure was notable. Evidence for advanced de-normalisation of smoking behaviour and intensification of stigma because of the introduction of the legislation was dependent on many factors, quality of smoking facilities played a key role. Conclusions: Ireland’s smoke-free legislation was associated with a drop in prevalence and cigarette consumption. Disparity in knowledge between smokers and non-smokers of the risk posed by SHS exposure reduced however the risk of ear infections in children needs to be effectively disseminated. The proliferation of ‘good’ smoking areas may diminish the potential to reduce smoking behaviour and de-normalise smoking.
Development of large-scale colloidal crystallisation methods for the production of photonic crystals
Resumo:
Colloidal photonic crystals have potential light manipulation applications including; fabrication of efficient lasers and LEDs, improved optical sensors and interconnects, and improving photovoltaic efficiencies. One road-block of colloidal selfassembly is their inherent defects; however, they can be manufactured cost effectively into large area films compared to micro-fabrication methods. This thesis investigates production of ‘large-area’ colloidal photonic crystals by sonication, under oil co-crystallization and controlled evaporation, with a view to reducing cracking and other defects. A simple monotonic Stöber particle synthesis method was developed producing silica particles in the range of 80 to 600nm in a single step. An analytical method assesses the quality of surface particle ordering in a semiquantitative manner was developed. Using fast Fourier transform (FFT) spot intensities, a grey scale symmetry area method, has been used to quantify the FFT profiles. Adding ultrasonic vibrations during film formation demonstrated large areas could be assembled rapidly, however film ordering suffered as a result. Under oil cocrystallisation results in the particles being bound together during film formation. While having potential to form large areas, it requires further refinement to be established as a production technique. Achieving high quality photonic crystals bonded with low concentrations (<5%) of polymeric adhesives while maintaining refractive index contrast, proved difficult and degraded the film’s uniformity. A controlled evaporation method, using a mixed solvent suspension, represents the most promising method to produce high quality films over large areas, 75mm x 25mm. During this mixed solvent approach, the film is kept in the wet state longer, thus reducing cracks developing during the drying stage. These films are crack-free up to a critical thickness, and show very large domains, which are visible in low magnification SEM images as Moiré fringe patterns. Higher magnification reveals separation between alternate fringe patterns are domain boundaries between individual crystalline growth fronts.