202 resultados para adrenoceptor
Resumo:
The response to beta(2)-agonists differs between asthmatics and has been linked to subsequent adverse events, even death. Possible determinants include beta(2)-adrenoceptor genotype at position 16, lung function and airway hyperresponsiveness. Fluctuation analysis provides a simple parameter alpha measuring the complex correlation properties of day-to-day peak expiratory flow. The present study investigated whether alpha predicts clinical response to beta(2)-agonist treatment, taking into account other conventional predictors. Analysis was performed on previously published twice-daily peak expiratory flow measurements in 66 asthmatic adults over three 6-month randomised order treatment periods: placebo, salbutamol and salmeterol. Multiple linear regression was used to determine the association between alpha during the placebo period and response to treatment (change in the number of days with symptoms), taking into account other predictors namely beta(2)-adrenoceptor genotype, lung function and its variability, and airway hyperresponsiveness. The current authors found that alpha measured during the placebo period considerably improved the prediction of response to salmeterol treatment, taking into account genotype, lung function or its variability, or airway hyperresponsiveness. The present study provides further evidence that response to beta(2)-agonists is related to the time correlation properties of lung function in asthma. The current authors conclude that fluctuation analysis of lung function offers a novel predictor to identify patients who may respond well or poorly to treatment.
Resumo:
The dorsal noradrenergic bundle (DB) is a major ascending pathway which originates in the locus coeruleus of the brainstem and projects to the forebrain. The behavioral role of the DB remains unclear, despite a great deal of effort. Selective attention and anxiety are two areas which have been the focus of recent research. Some studies of the DB utilize the neurotoxin 6-hydroxydopamine (6-OHDA), since 6-OHDA injection into this pathway results in greater than 90 percent depletion of cortical and hippocampal norepinephrine (NE). Neophobia, the fear of novelty, has been reported to be either increased or decreased by 6-OHDA lesions of the DB, depending on conditions. The selective attention hypothesis would be supported by increased neophobia after 6-OHDA lesions, while the anxiety hypothesis would be supported by decreased neophobia. We have examined the effects of 6-OHDA DB lesions on neophobia under conditions in which the test environment and/or the test food were novel. We found that the lesion attenuates neophobia, defined as an increased preference for novel food, when both the environment and food were novel. The lesion had no effect on neophobia when only the environment or food was novel.^ We examined the effects of chronic intraventricular NE infusions on behavior in our neophobia test, in sham and 6-OHDA DB lesioned animals. We found that chronic NE infusions into lesioned animals significantly reversed the lesion-induced attenuation of neophobia. Sham/NE infused animals demonstrated a 40 percent greater preference for familiar food compared to sham/saline infused animals. These data suggest that infusions of NE have an effect opposite to lesion-induced attenuation of neophobia. Chronic infusions of the alpha adrenoceptor agonists had no consistent effects on neophobia. The beta adrenoceptor agonist, isoproterenol reversed the lesion-induced attenuation of neophobia but not to a statistically significant degree. Isoproterenol increased neophobia in sham animals. Forskolin, an adenylate cyclase activator, mimicked the effects of NE infusion by significantly reversing the lesion-induced attenuation of neophobia, while increasing neophobia in sham animals. These results suggest that increased release of NE during stress increases neophobia in part by stimulating beta adrenoceptors which activate adenylate cyclase. ^
Resumo:
Dexmedetomidine, the most selective α2 -adrenoceptor agonist in clinical use, is increasingly being used in both conscious and anaesthetized horses; however, the pharmacokinetics and sedative effects of this drug administered alone as an infusion are not previously described in horses. Seven horses received an infusion of 8 μg dexmedetomidine/kg/h for 150 min, venous blood samples were collected, and dexmedetomidine concentrations were assayed using liquid chromatography-mass spectrometry (LC/MS) and analyzed using noncompartmental pharmacokinetic analysis. Sedation was scored as the distance from the lower lip of the horse to the ground measured in centimetre. The harmonic mean (SD) plasma elimination half-life (Lambda z half-life) for dexmedetomidine was 20.9 (5.1) min, clearance (Cl) was 0.3 (0.20) L/min/kg, and volume of distribution at steady-state (Vdss ) was 13.7 (7.9) L/kg. There was a considerable individual variation in the concentration of dexmedetomidine vs. time profile. The level of sedation covaried with the plasma concentration of dexmedetomidine. This implies that for clinical use of dexmedetomidine constant rate infusion in conscious horses, infusion rates can be easily adjusted to effect, and this is preferable to an infusion at a predetermined value.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (-)-isoproterenol (200 muM) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (-)-iso-proterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts- range 1-39% of (-)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four beta-blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1-100 muM, 3-isobutyl-1-melhylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (-)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of I I patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.
Resumo:
The crystal structures of human phenylethanolamine N-methyltransferase in complex with S-adenosyl-L-homocysteine (7, AdoHcy) and either 7-iodo-1,2,3,4-tetrahydroisoquinoline (2) or 8,9-dichloro-2,3,4,5-tetrahydro-1H-2-benzazepine (3, LY134046) were determined and compared with the structure of the enzyme complex with 7 and 7-aminosulfonyl-1,2,3,4-tetrahydroisoquinoline (1, SK&F 29661). The enzyme is able to accommodate a variety of chemically disparate functional groups on the aromatic ring of the inhibitors through adaptation of the binding pocket for this substituent and by subtle adjustments of the orientation of the inhibitors within the relatively planar binding site. In addition, the interactions formed by the amine nitrogen of all three inhibitors reinforce the hypothesis that this functional group mimics the beta-hydroxyl of norepinephrine rather than the amine. These studies provide further clues for the development of improved inhibitors for use as pharmacological probes.
Resumo:
1. We have investigated the cardiovascular pharmacology of the crude venom extract (CVE) from the potentially lethal, very small carybdeid jellyfish Carukia barnesi, in rat, guinea-pig and human isolated tissues and anaesthetized piglets. 2. In rat and guinea-pig isolated right atria, CVE (0.1-10 mu g/mL) caused tachycardia in the presence of atropine (I mu mol/L), a response almost completely abolished by pretreatment with tetrodotoxin (TTX; 0.1 mu mol/L). In paced left atria from guinea-pig or rat, CVE (0.1-3 mu g/mL) caused a positive inotropic response in the presence of atropine (1 mu mol/L). 3. In rat mesenteric small arteries, CVE (0.1-30 mu g/mL) caused concentration-dependent contractions that were unaffected by 0.1 mu mol/L TTX, 0.3 mu mol/L prazosin or 0.1 mu mol/L co-conotoxin GVIA. 4. Neither the rat right atria tachycardic response nor the contraction of rat mesenteric arteries to CVE were affected by the presence of box jellyfish (Chironex fleckeri) antivenom (92.6 units/mL). 5. In human isolated driven right atrial trabeculae muscle strips, CVE (10 mu g/mL) tended to cause an initial fall, followed by a more sustained increase, in contractile force. In the presence of atropine (I mu mol/L), CVE only caused a positive inotropic response. In separate experiments in the, presence of propranolol (0.2 mu mol/L), the negative inotropic effect of CVE was enhanced, whereas the positive inotropic response was markedly decreased. 6. In anaesthetized piglets, CVE (67 mu g/kg, i.v.) caused sustained tachycardia and systemic and pulmonary hypertension. Venous blood samples demonstrated a marked elevation in circulating levels of noradrenaline and adrenaline. 7. We conclude that C. barnesi venom may contain a neural sodium channel activator (blocked by TTX) that, in isolated atrial tissue (and in vivo), causes the release of transmitter (and circulating) catecholamines. The venom may also contain a 'direct' vasoconstrictor component. These observations explain, at least in part, the clinical features of the potentially deadly Irukandji syndrome.
Resumo:
The X-ray structure of human phenylethanolamine N-methyltransferase (hPNMT) complexed. with its product, S-adenoSyl-L-homocysteine (4), and the most potent inhibitor reported to date, SK&F 64139 (7), was used to identify the residues involved in inhibitor binding. Four of these residues, Va153, Lys57, Glu219 and Asp267, were replaced, in turn, with alanine. All variants had increased K-m values for phenylethanolamine (10), but only D267A showed a noteworthy (20-fold) decrease in its k(cat) value. Both WT hPNMT and D267A had similar k(cat) values for a rigid analogue, anti-9-amino-6-(trifluoromethyl)benzonorbornene (12), suggesting that Asp267 plays an important role in positioning the substrate but does not participate directly in catalysis. The K-i values for the binding of inhibitors such as 7 to the E219A and D267A variants increased by 2-3 orders of magnitude. Further, the inhibitors were shown to bind up to 50-fold more tightly in the presence of S-adenoSyl-(L)-methionine (3), suggesting that the binding of the latter brings about a conformational change in the enzyme.
Resumo:
3-Fluoromethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines (14, 16, and 18-22) are highly potent and selective inhibitors of phenylethanolamine N-methyltransferase (PNMT). Molecular modeling studies with 3-fluoromethyl-7-(N-alkyl aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines, such as 16, suggested that the sulfonamide -NH-could form a hydrogen bond with the side chain of Lys57. However, SAR studies and analysis of the crystal structure of human PNMT (hPNMT) in complex with 7 indicated that the sulfonamide oxygens, and not the sulfonamide -NH-, formed favorable interactions with the enzyme. Thus, we hypothesized that replacement of the sulfonamide -NH-with a methylene group could result in compounds that would retain potency at PNMT and that would have increased lipophilicity, thus increasing the likelihood they will cross the blood brain barrier. A series of 3-fluoromethyl-7-sulfonyl-1,2,3,4-tetrahydroisoquinolines (23-30) were synthesized and evaluated for their PNMT inhibitory potency and affinity for the R2-adrenoceptor. A comparison of these compounds with their isosteric sulfonamides (14, 16, and 18-22) showed that the sulfones were more lipophilic but less potent than their corresponding sulfonamides. Sulfone 24 (hPNMT K-i = 1.3 mu M) is the most potent compound in this series and is quite selective for PNMT versus the R2-adrenoceptor, but 24 is less potent than the corresponding sulfonamide, 16 (hPNMT K-i = 0.13 mu M). We also report the crystal structure of hPNMT in complex with sulfonamide 15, from which a potential hydrogen bond acceptor within the hPNMT active site has been identified, the main chain carbonyl oxygen of Asn39. The interaction of this residue with the sulfonamide -NH-is likely responsible for much of the enhanced inhibitory potency of the sulfonamides versus the sulfones.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
Induction of lipolysis in murine white adipocytes, and stimulation of adenylate cyclase in adipocyte plasma membranes, by a tumour-produced lipid mobilizing factor, was attenuated by low concentrations (10-7-10-5M) of the specific β3-adrenoceptor antagonist SR59230A. Lipid mobilizing factor (250 nM) produced comparable increases in intracellular cyclic AMP in CHOKI cells transfected with the human β3-adrenoceptor to that obtained with isoprenaline (1 nM). In both cases cyclic AMP production was attenuated by SR59230A confirming that the effect is mediated through a β3-adrenoceptor. A non-linear regression analysis of binding of lipid mobilizing factor to the β3-adrenoceptor showed a high affinity binding site with a Kd value 78±45 nM and a Bmax value (282±1 fmole mg protein-1) comparable with that of other β3-adrenoceptor agonists. These results suggest that lipid mobilizing factor induces lipolysis through binding to a β3-adrenoceptor. © 2002 The Cancer Research Campaign.
Resumo:
The in vivo and in vitro characteristics of the I2 binding site were probed using the technique of drug discrimination and receptor autoradiography. Data presented in this thesis indicates the I2 ligand 2-BFI generates a cue in drug discrimination. Further studies indicated agmatine, a proposed endogenous imidazoline ligand, and a number of imidazoline and imidazole analogues of 2-BFI substitute significantly for 2-BFI. In addition to specific I2 ligands the administration of NRl's (noradrenaline reuptake inhibitors), the sympathomimetic d-amphetamine, the α1-adrenoceptor agonist methoxamine, but not the β1 agonist dobutamine or the β2 agonist salbutamol, gave rise to significant levels of substitution for the 2-BFI cue. The administration of the α1-adrenoceptor antagonist WB4101, prior to 2- BFI itself significantly reduced levels of 2-BFI appropriate responding. Administration of the reversible MAO-A inhibitors moclobemide and Ro41-1049, but not the reversible MAO-B inhibitors lazabemide and Ro16-6491, gave rise to potent dose dependent levels of substitution for the 2-BFI cue. Further studies indicated the administration of a number of β-carbolines and the structurally related indole alkaloid ibogaine also gave rise to dose dependent significant levels of substitution. Due to the relationship of indole alkaloids to serotonin the 5-HT releaser fenfluramine and a number of SSRI's (selective serotonin reuptake inhibitor) were also administered and these compounds gave rise to significant partial (20-80% responses to the 2-BFI lever) levels of substitution. The autoradiographical studies reported here indicate [3H]2-BFI labels I2 sites within the rat arcuate nucleus, area postrema, pineal gland, interpeduncular nucleus and subfornical organ. Subsequent experiments confirmed that the drug discrimination dosing schedule significantly increases levels of [3H]2-BFI 12 binding within two of these nuclei. However, levels of [3H]2-BFI specific binding were significantly reduced within four of these nuclei after chronic treatment with the irreversible MAO inhibitors deprenyl and tranylcypromine but not pargyline, which only reduced levels significantly in two. Further autoradiographical studies indicated that the distribution of [3H]2-BFI within the C57/B mouse compares favourably to that within the rat. Comparison of these levels of binding to those from transgenic mice who over-express MAO-B indicates two possibly distinct populations of [3H]2-BFI 12 sites exist in mouse brain. The data presented here indicates the 2-BFI cue is associated with the selective activation of α1-adrenoceptors and possibly 5-HT receptors. 2-BFI trained rats recognise reversible MAO-A but not MAO-B inhibitors. However, data within this thesis indicates the autoradiographical distribution of I2 sites bears a closer resemblance to that of MAO-B not MAO-A and further studies using transgenic mice that over-express MAO-B suggests a non-MAO-B I2 site exists in mouse brain.
Resumo:
Cachexia is characterised by a progressive weight loss due to depletion of both skeletal muscle and adipose tissue. The loss of adipose tissue is due to the production of a tumour-derived lipid mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. The administration of LMF to a non-tumour bearing mice produced a rapid weight loss, with a specific reduction in carcass lipid with also some redistribution of lipid with the accumulation of lipid in the liver. There was also up-regulation of uncoupling protein-1 and -2 mRNA and protein expression in brown adipose tissue, suggesting that an adaptive process occurs due to increased energy mobilisation. There was also up-regulation of UCP-2 in the livers of LMF treated mice, suggesting a protective mechanism to the build up of lipid in the livers, which would produce free radical by-products. LMF was also shown to stimulate cyclic AMP production in CHO-K1 cells transfected with human -3 adrenergic receptors and inhibited by the -β3 antagonist SR59230A. LMF binding was also inhibited by SR59230A in isolated receptors. This suggests that LMF mediates its effects through a β3 adrenergic receptor. There were also changes in glucose and fatty acid uptake in LMF treated mice, which suggests metabolic changes are occurring. The study suggests that a tumour derived lipolytic factor acts through the 3 adrenoceptor producing effects on lipid mobilisation, energy expenditure and glucose metabolism.
Resumo:
Tic-like movements in rodents bear close similarities to those observed in humans both pharmacologically and morphologically. Pharmacologically, tics are modulated by serotonergic and dopaminergic systems and abnormalities of these systems have been reported in Tourette's Syndrome (TS). Therefore, serotonergic and dopaminergic modulation of tics induced by a thyrotrophin-releasing hormone (TRH) analogue were studied as possible models for TS. The TRH analogue MK771 induced a variety of tic like movements in mice; blinking fore-paw-licking and fore-paw-tremor were quantified and serotonergic and dopaminergic modulation was investigated. The selective dopamine D1 receptor antagonists SCH23390 and SCH39166 and dopamine D2 antagonists raclopride and sulpiride had no effect on MK771 induced blinking. The D1 antagonists attenuated fore-paw-tremor and -licking while the D2 antagonists were generally without effect on these behaviours. Ketanserin (5-HT2A/ alpha-1 antagonist) and ritanserin (5-HT2A/2C antagonist) were able to attenuate MK771-induced blinking and ketanserin, mianserin (5-HT2A/2C antagonist) and prazosin (alpha-1 adrenoceptor antagonist) were able to attenuate MK771-induced fore-paw-tremor and -licking. The 5-HT2C/2B antagonist SB200646A was without effect on blinking and fore-paw-licking but dose-dependently potentiated fore-paw-tremor. The 5-HT1A agonists 8-OH DPAT and buspirone attenuated blinking at the lower doses tested but were ineffective at the higher doses; the converse was found for fore-paw-licking and -tremor behaviours.The effects of these ligands appeared to be at a postsynaptic 5-HTlA site since para-chlorophenylalanine was without effect on the manipulation of these behaviours. (S)-W A Y100135 was without effect on MK771-induced behaviours, spontaneous and DOl-induced head shakes. Because kynurenine potentiates head shakes and plasma concentrations are raised in TS patients the effects of kynurenine on the 5-HT2A/2C agonist DOl mediated head shake were established. Kynurenine potentiated the DOl head shake. Attempts were made to correlate serotonergic unit activity with tic like behaviour in cats but this proved unsuccessful. However, the pharmacological understanding of 5-HTlA receptor function has been hampered because of the lack of selective antagonists for this site. For this reason the effects of the novel 5-HTlA antagonists (S)-WA Y- 100135 and WAY -100635 were tested on 5-HT single-unit activity recorded from the dorsal-raphe-nucleus in the behaving cat. Both drugs antagonised the suppression of unit activity caused by 8-0H DPAT. (S)-WA Y-100135 reduced unit activity whereas WAY-100635 increased it. This suggests that WAY-100635 is acting as an antagonist at the 5-HTlA somatodendritic autoreceptor and that (S)W A Y -100135 acts as a partial agonist at this site. Aspects of tic like behaviour and serotonergic control are discussed.
Resumo:
Noradrenaline was found to significantly stimulate fluid and Na absorption across everted sacs of rat jejunum. Of a number of a1, and 2-adrenoceptor antagonists tested only prazosin significantly inhibited the stimulant effect of noradrenaline and further experiments revealed an antiabsorptive effect of prazosin alone. Theophylline reduced jejunal fluid and Na absorption and this effect was not reversed by 2-adrenoceptor stimulation in contrast to previous findings in vivo. Evidence suggests the everted sac preparation is not appropriate to the study of intestinal fluid and electrolyte transport. The investigation of Jejunal ion transport in vitro was continued using an Ussing chamber preparation. Selective 2-adrenoceptor stimulation was found to depress electrogenic anion secretion, as neurotoxin tetrodotoxin indicated that this was a direct epithelial effect. 2-adrenoceptor agonists have considerable therapeutic value as antisecretory agents and the model of rat jejunum in vitro represents a convenient experimental model for research in this area. The selective 2-adrenoceptor antagonist ICI 118551 decreased basal SCC and inhibited increases in SCC in response to isoprenaline or salbutamol indicating the presence of a 2-adrenoceptor mechanism mediating both secretory tone and increases in secretory processes. Many intestinal secretagogues elicit electrolyte secretion via the stimulation of intramural secretory nervous pathways. If these pathways involve the activation of 2-adrenoceptorsthe 2-adrenoceptor antagonists may be useful in the treatment of diarrhoeal diseases. A single pass lumen perfusion technique was used to investigate possible sympathetic tone over colonic fluid and electrolyte absorption in the rat colon in vivo. The technique employed appeared to lack the necessary resolution for this study and alternative approaches are discussed
Resumo:
Drugs acting at 5-HT receptors were evaluated on three animal models of anxiety. On the elevated X-maze test the majority of 5-HT1 agonists were found to be anxiogenic. However, ipsapirone was anxiolytic and buspirone and gepirone were inactive. The 5-HT2 agonist DOI and the 5-HT2 antagonist ritanserin were anxiolytic while ICI 169,369, a 5-HT2 antagonist was inactive. All 5-HT3 antagonists tested were inactive in this test, while the indirect serotomimetics zimeldine and fenfluramine were anxiogenic. Neither beta-adrenoceptor agonists nor antagonists had reproducible effects on anxiety in this model. Combined beta-1/beta-2 adrenoceptor antagonists reversed the anxiogenic effects of 8-OH-DPAT while selective beta-1 or beta-2 antagonists did not. On the social interaction model the 5-HT1 agonists 8-OH-DPAT, RU 24969 and 5-MeODMT were anxiogenic and ipsapirone was anxiolytic. The 5-HT2 agonist DOI and the beta-adrenoceptor- and 5-HT- antagonist pindolol were anxiolytic, while the 5-HT2 and 5-HT3 antagonists were inactive. In the marble burying test, the 5-HT upake inhibitors zimeldine, fluvoxamine, indalpine and citalopram, the 5-HT1B/5-HT1C agonists mCPP and TFMPP and the 5-HT2/5-HT1C agonist DOI reduced marble burying without affecting locomotor activity. 5-HT1A agonists and the 5-HT2 and 5-HT3 antagonists were without effect. Lesions of the dorsal raphe nucleus reversed the anxiogenic effects of 8-OH-DPAT in the X-maze model. The implication of these results for the understanding of the pharmacology of 5-HT in anxiety is discussed.