849 resultados para adaptive blind source separation method
Resumo:
A method for separation of stresses in two and three-dimensional photo elasticity using the harmonisation ofjrst stress invariant along a straight section is deve- ,dped. For two-dimensions, the equations of equilibrium are reformulated in terms ojsum and difference of normal stresses and relations are obtained which can be used for harmonisation of the first invariant of stress along a straight section. A similar procedure is adopted for three-dimensions by making use of the Beltrmi-MicheN equations. The new relations are used in finite d~yerencefo rm to evaluate the sum of normal stresses along straight sections in a three-dimensional body. The method requires photoelastic data along the section as well ~rra djacent sections. This method could be used as an alternative to the shear d@erence method for separation of stresses in photoelasticity. 7he accuracy and reliability of the method is ver$ed by applying the method to problems whose solutions are known.
Resumo:
Scalable video coding (SVC) is an emerging standard built on the success of advanced video coding standard (H.264/AVC) by the Joint video team (JVT). Motion compensated temporal filtering (MCTF) and Closed loop hierarchical B pictures (CHBP) are two important coding methods proposed during initial stages of standardization. Either of the coding methods, MCTF/CHBP performs better depending upon noise content and characteristics of the sequence. This work identifies other characteristics of the sequences for which performance of MCTF is superior to that of CHBP and presents a method to adaptively select either of MCTF and CHBP coding methods at the GOP level. This method, referred as "Adaptive Decomposition" is shown to provide better R-D performance than of that by using MCTF or CRBP only. Further this method is extended to non-scalable coders.
Resumo:
In our earlier work [1], we employed MVDR (minimum variance distortionless response) based spectral estimation instead of modified-linear prediction method [2] in pitch modification. Here, we use the Bauer method of MVDR spectral factorization, leading to a causal inverse filter rather than a noncausal filter setup with MVDR spectral estimation [1]. Further, this is employed to obtain source (or residual) signal from pitch synchronous speech frames. The residual signal is resampled using DCT/IDCT depending on the target pitch scale factor. Finally, forward filters realized from the above factorization are used to get pitch modified speech. The modified speech is evaluated subjectively by 10 listeners and mean opinion scores (MOS) are tabulated. Further, modified bark spectral distortion measure is also computed for objective evaluation of performance. We find that the proposed algorithm performs better compared to time domain pitch synchronous overlap [3] and modified-LP method [2]. A good MOS score is achieved with the proposed algorithm compared to [1] with a causal inverse and forward filter setup.
Resumo:
Randomness in the source condition other than the heterogeneity in the system parameters can also be a major source of uncertainty in the concentration field. Hence, a more general form of the problem formulation is necessary to consider randomness in both source condition and system parameters. When the source varies with time, the unsteady problem, can be solved using the unit response function. In the case of random system parameters, the response function becomes a random function and depends on the randomness in the system parameters. In the present study, the source is modelled as a random discrete process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour of the concentration in a porous medium while the system parameters are also modelled as random fields. Analytical expressions of mean and covariance of concentration due to random discrete source are derived in terms of mean and covariance of unit response function. The probabilistic behaviour of the random response function is obtained by using a perturbation-based stochastic finite element method (SFEM), which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1-D as well as the 3-D solute transport problems. The results obtained with SFEM are compared with the Monte Carlo simulation for 1-D problems.
Resumo:
A method of source localization in shallow water, based on subspace concept, is described. It is shown that a vector representing the source in the image space spanned by the direction vectors of the source images is orthogonal to the noise eigenspace of the covariance matrix. Computer simulation has shown that a horizontal array of eight sensors can accurately localize one or more uncorrelated sources in shallow water dominated by multipath propagation.
Resumo:
The present paper aims at studying the performance characteristics of a subspace based algorithm for source localization in shallow water such as coastal water. Specifically, we study the performance of Multi Image Subspace Algorithm (MISA). Through first-order perturbation analysis and computer simulation it is shown that MISA is unbiased and statistically efficient. Further, we bring out the role of multipaths (or images) in reducing the error in the localization. It is shown that the presence of multipaths is found to improve the range and depth estimates. This may be attributed to the increased curvature of the wavefront caused by interference from many coherent multipaths.
Resumo:
The performance characteristics of a junction field-effect transistor (j.f.e.t.) are evaluated considering the presence of the gap between the gate electrode and the source and drain terminals. It is concluded that the effect of the gap is to demand a higher drain voltage to maintain the same drain current. So long as the device is operated at the same drain current, the presence of the gap does not change the performance of the device as an amplifier. The nature of the performance of the device as a variable resistor is not affected by the gap if it is less than or equal to the physical height of the channel. For gap lengths larger than the channel height, the effect of the gap is to add a series resistance in the drain.
Resumo:
This work is concerned with the interaction of a source-sink pair. The main parameters of the problem are source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of source and sink. Of concern is the percentage of source fluid that enters the sink as a function of these parameters. The experiments have been carried using the source nozzle diameter of 6 mm and the sink pipe diameter of two sizes: 10 mm and 20 mm. The Reynolds numbers of the source jet is about 3200. The main diagnostics are flow visualization using dye, laser induced fluorescence (LIF), particle streak photographs and particle image velocimetry (Ply). To obtain the removal effectiveness (that is percentage of source fluid that is going through the sink pipe), titration method is used. The sink diameter and the angle between source and the sink axes do not influence efficiencies as do the sink flow rate and the lateral separation. Data from experiments have been consolidated so that these results can be used for designing sinks for removal of heat and pollutants. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.
Resumo:
The paper presents a multiscale method for crack propagation. The coarse region is modelled by the differential reproducing kernel particle method. Fracture in the coarse scale region is modelled with the Phantom node method. A molecular statics approach is employed in the fine scale where crack propagation is modelled naturally by breaking of bonds. The triangular lattice corresponds to the lattice structure of the (111) plane of an FCC crystal in the fine scale region. The Lennard-Jones potential is used to model the atom-atom interactions. The coupling between the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are interpolated from the coarse scale solution and enforced as boundary conditions on the fine scale. The fine scale region is adaptively refined and coarsened as the crack propagates. The centro symmetry parameter is used to detect the crack tip location. The method is implemented in two dimensions. The results are compared to pure atomistic simulations and show excellent agreement. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
We consider the problem of blind multiuser detection. We adopt a Bayesian approach where unknown parameters are considered random and integrated out. Computing the maximum a posteriori estimate of the input data sequence requires solving a combinatorial optimization problem. We propose here to apply the Cross-Entropy method recently introduced by Rubinstein. The performance of cross-entropy is compared to Markov chain Monte Carlo. For similar Bit Error Rate performance, we demonstrate that Cross-Entropy outperforms a generic Markov chain Monte Carlo method in terms of operation time.
Resumo:
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.