953 resultados para adaptive algorithm
Resumo:
Heterogeneous multi-core FPGAs contain different types of cores, which can improve efficiency when used with an effective online task scheduler. However, it is not easy to find the right cores for tasks when there are multiple objectives or dozens of cores. Inappropriate scheduling may cause hot spots which decrease the reliability of the chip. Given that, our research builds a simulating platform to evaluate all kinds of scheduling algorithms on a variety of architectures. On this platform, we provide an online scheduler which uses multi-objective evolutionary algorithm (EA). Comparing the EA and current algorithms such as Predictive Dynamic Thermal Management (PDTM) and Adaptive Temperature Threshold Dynamic Thermal Management (ATDTM), we find some drawbacks in previous work. First, current algorithms are overly dependent on manually set constant parameters. Second, those algorithms neglect optimization for heterogeneous architectures. Third, they use single-objective methods, or use linear weighting method to convert a multi-objective optimization into a single-objective optimization. Unlike other algorithms, the EA is adaptive and does not require resetting parameters when workloads switch from one to another. EAs also improve performance when used on heterogeneous architecture. A efficient Pareto front can be obtained with EAs for the purpose of multiple objectives.
Resumo:
We introduce a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis. The approach extracts the skeleton directly from a triangulated mesh and adopts an adaptive octree-based approach in which only skeletal voxels are refined to a lower level of the hierarchy, resulting in robust and accurate skeletons at extremely high resolution. The quality of the extracted medial surfaces is confirmed by an extensive set of experiments. © 2012 IEEE.
Resumo:
Principal component analysis (PCA) is well recognized in dimensionality reduction, and kernel PCA (KPCA) has also been proposed in statistical data analysis. However, KPCA fails to detect the nonlinear structure of data well when outliers exist. To reduce this problem, this paper presents a novel algorithm, named iterative robust KPCA (IRKPCA). IRKPCA works well in dealing with outliers, and can be carried out in an iterative manner, which makes it suitable to process incremental input data. As in the traditional robust PCA (RPCA), a binary field is employed for characterizing the outlier process, and the optimization problem is formulated as maximizing marginal distribution of a Gibbs distribution. In this paper, this optimization problem is solved by stochastic gradient descent techniques. In IRKPCA, the outlier process is in a high-dimensional feature space, and therefore kernel trick is used. IRKPCA can be regarded as a kernelized version of RPCA and a robust form of kernel Hebbian algorithm. Experimental results on synthetic data demonstrate the effectiveness of IRKPCA. © 2010 Taylor & Francis.
Resumo:
Optimization of adaptive traffic signal timing is one of the most complex problems in traffic control systems. This dissertation presents a new method that applies the parallel genetic algorithm (PGA) to optimize adaptive traffic signal control in the presence of transit signal priority (TSP). The method can optimize the phase plan, cycle length, and green splits at isolated intersections with consideration for the performance of both the transit and the general vehicles. Unlike the simple genetic algorithm (GA), PGA can provide better and faster solutions needed for real-time optimization of adaptive traffic signal control. ^ An important component in the proposed method involves the development of a microscopic delay estimation model that was designed specifically to optimize adaptive traffic signal with TSP. Macroscopic delay models such as the Highway Capacity Manual (HCM) delay model are unable to accurately consider the effect of phase combination and phase sequence in delay calculations. In addition, because the number of phases and the phase sequence of adaptive traffic signal may vary from cycle to cycle, the phase splits cannot be optimized when the phase sequence is also a decision variable. A "flex-phase" concept was introduced in the proposed microscopic delay estimation model to overcome these limitations. ^ The performance of PGA was first evaluated against the simple GA. The results show that PGA achieved both faster convergence and lower delay for both under- or over-saturated traffic conditions. A VISSIM simulation testbed was then developed to evaluate the performance of the proposed PGA-based adaptive traffic signal control with TSP. The simulation results show that the PGA-based optimizer for adaptive TSP outperformed the fully actuated NEMA control in all test cases. The results also show that the PGA-based optimizer was able to produce TSP timing plans that benefit the transit vehicles while minimizing the impact of TSP on the general vehicles. The VISSIM testbed developed in this research provides a powerful tool to design and evaluate different TSP strategies under both actuated and adaptive signal control. ^
Resumo:
This thesis describes the development of an adaptive control algorithm for Computerized Numerical Control (CNC) machines implemented in a multi-axis motion control board based on the TMS320C31 DSP chip. The adaptive process involves two stages: Plant Modeling and Inverse Control Application. The first stage builds a non-recursive model of the CNC system (plant) using the Least-Mean-Square (LMS) algorithm. The second stage consists of the definition of a recursive structure (the controller) that implements an inverse model of the plant by using the coefficients of the model in an algorithm called Forward-Time Calculation (FTC). In this way, when the inverse controller is implemented in series with the plant, it will pre-compensate for the modification that the original plant introduces in the input signal. The performance of this solution was verified at three different levels: Software simulation, implementation in a set of isolated motor-encoder pairs and implementation in a real CNC machine. The use of the adaptive inverse controller effectively improved the step response of the system in all three levels. In the simulation, an ideal response was obtained. In the motor-encoder test, the rise time was reduced by as much as 80%, without overshoot, in some cases. Even with the larger mass of the actual CNC machine, decrease of the rise time and elimination of the overshoot were obtained in most cases. These results lead to the conclusion that the adaptive inverse controller is a viable approach to position control in CNC machinery.
Resumo:
This letter presents novel behaviour-based tracking of people in low-resolution using instantaneous priors mediated by head-pose. We extend the Kalman Filter to adaptively combine motion information with an instantaneous prior belief about where the person will go based on where they are currently looking. We apply this new method to pedestrian surveillance, using automatically-derived head pose estimates, although the theory is not limited to head-pose priors. We perform a statistical analysis of pedestrian gazing behaviour and demonstrate tracking performance on a set of simulated and real pedestrian observations. We show that by using instantaneous `intentional' priors our algorithm significantly outperforms a standard Kalman Filter on comprehensive test data.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A parallel method for the dynamic partitioning of unstructured meshes is outlined. The method includes diffusive load-balancing techniques and an iterative optimisation technique known as relative gain optimisationwhich both balances theworkload and attempts to minimise the interprocessor communications overhead. It can also optionally include amultilevel strategy. Experiments on a series of adaptively refined meshes indicate that the algorithmprovides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more rapidly. Perhaps more importantly, the algorithm results in only a small fraction of the amount of data migration compared to the static partitioners.
Resumo:
This chapter describes a parallel optimization technique that incorporates a distributed load-balancing algorithm and provides an extremely fast solution to the problem of load-balancing adaptive unstructured meshes. Moreover, a parallel graph contraction technique can be employed to enhance the partition quality and the resulting strategy outperforms or matches results from existing state-of-the-art static mesh partitioning algorithms. The strategy can also be applied to static partitioning problems. Dynamic procedures have been found to be much faster than static techniques, to provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data. The method employs a new iterative optimization technique that balances the workload and attempts to minimize the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more quickly. The dynamic evolution of load has three major influences on possible partitioning techniques; cost, reuse, and parallelism. The unstructured mesh may be modified every few time-steps and so the load-balancing must have a low cost relative to that of the solution algorithm in between remeshing.
Resumo:
A parallel method for dynamic partitioning of unstructured meshes is described. The method employs a new iterative optimisation technique which both balances the workload and attempts to minimise the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more quickly. Perhaps more importantly, the algorithm results in only a small fraction of the amount of data migration compared to the static partitioners.
Resumo:
We present a dynamic distributed load balancing algorithm for parallel, adaptive finite element simulations using preconditioned conjugate gradient solvers based on domain-decomposition. The load balancer is designed to maintain good partition aspect ratios. It can calculate a balancing flow using different versions of diffusion and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. We show how to use information from the second step to guide the first. Experimental results using Bramble's preconditioner and comparisons to existing state-ot-the-art load balancers show the benefits of the construction.
Resumo:
We present a dynamic distributed load balancing algorithm for parallel, adaptive finite element simulations using preconditioned conjugate gradient solvers based on domain-decomposition. The load balancer is designed to maintain good partition aspect ratios. It calculates a balancing flow using different versions of diffusion and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. We show how to use information from the second step to guide the first. Experimental results using Bramble's preconditioner and comparisons to existing state-of-the-art balancers show the benefits of the construction.
Resumo:
A simple but efficient voice activity detector based on the Hilbert transform and a dynamic threshold is presented to be used on the pre-processing of audio signals -- The algorithm to define the dynamic threshold is a modification of a convex combination found in literature -- This scheme allows the detection of prosodic and silence segments on a speech in presence of non-ideal conditions like a spectral overlapped noise -- The present work shows preliminary results over a database built with some political speech -- The tests were performed adding artificial noise to natural noises over the audio signals, and some algorithms are compared -- Results will be extrapolated to the field of adaptive filtering on monophonic signals and the analysis of speech pathologies on futures works
Resumo:
We revisit the visibility problem, which is traditionally known in Computer Graphics and Vision fields as the process of computing a (potentially) visible set of primitives in the computational model of a scene. We propose a hybrid solution that uses a dry structure (in the sense of data reduction), a triangulation of the type
, to accelerate the task of searching for visible primitives. We came up with a solution that is useful for real-time, on-line, interactive applications as 3D visualization. In such applications the main goal is to load the minimum amount of primitives from the scene during the rendering stage, as possible. For this purpose, our algorithm executes the culling by using a hybrid paradigm based on viewing-frustum, back-face culling and occlusion models. Results have shown substantial improvement over these traditional approaches if applied separately. This novel approach can be used in devices with no dedicated processors or with low processing power, as cell phones or embedded displays, or to visualize data through the Internet, as in virtual museums applications.
Resumo:
Abstract. Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound immunological concepts.