973 resultados para absolute fluorescence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined detection system involving simultaneous LIF and contactless-conductometric measurements at the same place of the microfluidic chip was described. The LIF measurement was designed according to the confocal principle and a moveable contactless-conductivity detector was used in (CD)-D-4. Both measurements were mutually independent and advantageous in analyses of mixtures. Various experimental parameters affecting the response were examined and optimized. The performances were demonstrated by simultaneous detection of Rhodamine B. And the results showed that the combined detection system could be used sensitively and reliably. (C) 2008 Yong Yu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2 pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using fluorescence microscopy with single molecule sensitivity it is now possible to follow the movement of individual fluorophore tagged molecules such as proteins and lipids in the cell membrane with nanometer precision. These experiments are important as they allow many key biological processes on the cell membrane and in the cell, such as transcription, translation and DNA replication, to be studied at new levels of detail. Computerized microscopes generate sequences of images (in the order of tens to hundreds) of the molecules diffusing and one of the challenges is to track these molecules to obtain reliable statistics such as speed distributions, diffusion patterns, intracellular positioning, etc. The data set is challenging because the molecules are tagged with a single or small number of fluorophores, which makes it difficult to distinguish them from the background, the fluorophore bleaches irreversibly over time, the number of tagged molecules are unknown and there is occasional loss of signal from the tagged molecules. All these factors make accurate tracking over long trajectories difficult. Also the experiments are technically difficulty to conduct and thus there is a pressing need to develop better algorithms to extract the maximum information from the data. For this purpose we propose a Bayesian approach and apply our technique to synthetic and a real experimental data set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. Results: We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. Conclusion: This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was < 5 nM, and that of the MCCD was 0.1 mu M. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was <5 nM, and that of the MCCD was 0.1 μM. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method of image-speckle contrast for the nonprecalibration measurement of the root-mean-square roughness and the lateral-correlation length of random surfaces with Gaussian correlation. We use the simplified model of the speckle fields produced by the weak scattering object in the theoretical analysis. The explicit mathematical relation shows that the saturation value of the image-speckle contrast at a large aperture radius determines the roughness, while the variation of the contrast with the aperture radius determines the lateral-correlation length. In the experimental performance, we specially fabricate the random surface samples with Gaussian correlation. The square of the image-speckle contrast is measured versus the radius of the aperture in the 4f system, and the roughness and the lateral-correlation length are extracted by fitting the theoretical result to the experimental data. Comparison of the measurement with that by an atomic force microscope shows our method has a satisfying accuracy. (C) 2002 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light microscopy has been one of the most common tools in biological research, because of its high resolution and non-invasive nature of the light. Due to its high sensitivity and specificity, fluorescence is one of the most important readout modes of light microscopy. This thesis presents two new fluorescence microscopic imaging techniques: fluorescence optofluidic microscopy and fluorescent Talbot microscopy. The designs of the two systems are fundamentally different from conventional microscopy, which makes compact and portable devices possible. The components of the devices are suitable for mass-production, making the microscopic imaging system more affordable for biological research and clinical diagnostics.

Fluorescence optofluidic microscopy (FOFM) is capable of imaging fluorescent samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, a filter-coated CMOS sensor collects the fluorescence emissions. The collected data can then be processed to render a fluorescence microscopic image. The resolution, which is determined by the focused light spot size, is experimentally measured to be 0.65 μm.

Fluorescence Talbot microscopy (FTM) is a fluorescence chip-scale microscopy technique that enables large field-of-view (FOV) and high-resolution imaging. The FTM method utilizes the Talbot effect to project a grid of focused excitation light spots onto the sample. The sample is placed on a filter-coated CMOS sensor chip. The fluorescence emissions associated with each focal spot are collected by the sensor chip and are composed into a sparsely sampled fluorescence image. By raster scanning the Talbot focal spot grid across the sample and collecting a sequence of sparse images, a filled-in high-resolution fluorescence image can be reconstructed. In contrast to a conventional microscope, a collection efficiency, resolution, and FOV are not tied to each other for this technique. The FOV of FTM is directly scalable. Our FTM prototype has demonstrated a resolution of 1.2 μm, and the collection efficiency equivalent to a conventional microscope objective with a 0.70 N.A. The FOV is 3.9 mm × 3.5 mm, which is 100 times larger than that of a 20X/0.40 N.A. conventional microscope objective. Due to its large FOV, high collection efficiency, compactness, and its potential for integration with other on-chip devices, FTM is suitable for diverse applications, such as point-of-care diagnostics, large-scale functional screens, and long-term automated imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in optical techniques have enabled many breakthroughs in biology and medicine. However, light scattering by biological tissues remains a great obstacle, restricting the use of optical methods to thin ex vivo sections or superficial layers in vivo. In this thesis, we present two related methods that overcome the optical depth limit—digital time reversal of ultrasound encoded light (digital TRUE) and time reversal of variance-encoded light (TROVE). These two techniques share the same principle of using acousto-optic beacons for time reversal optical focusing within highly scattering media, like biological tissues. Ultrasound, unlike light, is not significantly scattered in soft biological tissues, allowing for ultrasound focusing. In addition, a fraction of the scattered optical wavefront that passes through the ultrasound focus gets frequency-shifted via the acousto-optic effect, essentially creating a virtual source of frequency-shifted light within the tissue. The scattered ultrasound-tagged wavefront can be selectively measured outside the tissue and time-reversed to converge at the location of the ultrasound focus, enabling optical focusing within deep tissues. In digital TRUE, we time reverse ultrasound-tagged light with an optoelectronic time reversal device (the digital optical phase conjugate mirror, DOPC). The use of the DOPC enables high optical gain, allowing for high intensity optical focusing and focal fluorescence imaging in thick tissues at a lateral resolution of 36 µm by 52 µm. The resolution of the TRUE approach is fundamentally limited to that of the wavelength of ultrasound. The ultrasound focus (~ tens of microns wide) usually contains hundreds to thousands of optical modes, such that the scattered wavefront measured is a linear combination of the contributions of all these optical modes. In TROVE, we make use of our ability to digitally record, analyze and manipulate the scattered wavefront to demix the contributions of these spatial modes using variance encoding. In essence, we encode each spatial mode inside the scattering sample with a unique variance, allowing us to computationally derive the time reversal wavefront that corresponds to a single optical mode. In doing so, we uncouple the system resolution from the size of the ultrasound focus, demonstrating optical focusing and imaging between highly diffusing samples at an unprecedented, speckle-scale lateral resolution of ~ 5 µm. Our methods open up the possibility of fully exploiting the prowess and versatility of biomedical optics in deep tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.