966 resultados para Zero-Divisor Graphs
Resumo:
In this note,the (t) properties of five class are studied. We proved that the classes of cographs and clique perfect graphs without isolated vertices satisfy the (2) property and the (3) property, but do not satisfy the (t) property for tis greater than equal to 4. The (t) properties of the planar graphs and the perfect graphss are also studied . we obtain a necessary and suffieient conditions for the trestled graph of index K to satisfy the (2) property
Resumo:
The eigenvalue of a graph is the eigenvalue of its adjacency matrix . A graph G is integral if all of its cigenvalues are integers. In this paper some new classes of integral graphs are constructed.
Resumo:
The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D, and the D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.
Resumo:
Abstract. The paper deals with graph operators-the Gallai graphs and the anti-Gallai graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H-free for any finite graph H. The case of complement reducible graphs-cographs is discussed in detail. Some relations between the chromatic number, the radius and the diameter of a graph and its Gallai and anti-Gallai graphs are also obtained.
Resumo:
Antimedian graphs are introduced as the graphs in which for every triple of vertices there exists a unique vertex x that maximizes the sum of the distances from x to the vertices of the triple. The Cartesian product of graphs is antimedian if and only if its factors are antimedian. It is proved that multiplying a non-antimedian vertex in an antimedian graph yields a larger antimedian graph. Thin even belts are introduced and proved to be antimedian. A characterization of antimedian trees is given that leads to a linear recognition algorithm.
Resumo:
The energy of a graph G is the sum of the absolute values of its eigenvalues. In this paper, we study the energies of some classes of non-regular graphs. Also the spectrum of some non-regular graphs and their complements are discussed.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
A graphs G is clique irreducible if every clique in G of size at least two,has an edge which does not lie in any other clique of G and is clique reducible if it is not clique irreducible. A graph G is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G and clique vertex reducible if it is not clique vertex irreducible. The clique vertex irreducibility and clique irreducibility of graphs which are non-complete extended p-sums (NEPS) of two graphs are studied. We prove that if G(c) has at least two non-trivial components then G is clique vertex reducible and if it has at least three non-trivial components then G is clique reducible. The cographs and the distance hereditary graphs which are clique vertex irreducible and clique irreducible are also recursively characterized.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local-density-functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.
Resumo:
We present a complete calculation of the structure of liquid 4He confined to a concave nanoscopic wedge, as a function of the opening angle of the walls. This is achieved within a finite-range density functional formalism. The results here presented, restricted to alkali metal substrates, illustrate the change in meniscus shape from rather broad to narrow wedges on weak and strong alkali adsorbers, and we relate this change to the wetting behavior of helium on the corresponding planar substrate. As the wedge angle is varied, we find a sequence of stable states that, in the case of cesium, undergo one filling and one emptying transition at large and small openings, respectively. A computationally unambiguous criterion to determine the contact angle of 4He on cesium is also proposed.