986 resultados para ZINC IONS
Resumo:
In recent times, blended polymers have shown a lot of promise in terms of easy processability in different shapes and forms. In the present work, polyaniline emeraldine base (PANi-EB) was doped with camphor sulfonic acid (CSA) and combined with the conducting polymer polyfluorene (PF) as well as the insulating polymer polyvinyl chloride (PVC) to synthesize CSA doped PANi-PF and PANi-PVC blended polymers. It is well known that PANi when doped with CSA becomes highly conducting. However, its poor mechanical properties, such as low tensile, compressive, and flexural strength render PANi a non-ideal material to be processed for its various practical applications, such as electromagnetic shielding, anti-corrosion shielding, photolithography and microelectronic devices etc. Thus the search for polymers which are easily processable and are capable of showing high conductivity still continues. PANi-PVC blend was prepared, which showed low conductivity which is limiting factor for certain applications. Therefore, another processable polymer PF was chosen as conducting matrix. Conducting PF can be easily processed into various shapes and forms. Therefore, a blend mixture was prepared by using PANi and PF through the use of CSA as a counter ion which forms a "bridge" between the two polymeric components of the inter-polymer complex. Two blended polymers have been synthesized and investigated for their conductivity behaviour. It was observed that the blended film of CSA doped PANi-PVC showed a room temperature electrical conductivity of 2.8 × 10-7 S/cm where as the blended film made by CSA doped PANi with conducting polymer PF showed a room temperature conductivity of 1.3 × 10-5 S/cm. Blended films were irradiated with 100 MeV silicon ions with a view to increase their conductivity with a fluence ranging from 1011 ions to 1013 per cm2 from 15 UD Pelletron accelerator at NSC, New Delhi.
Resumo:
The KRAB-zinc finger proteins (KRAB-ZFPs) represent a very large, but poorly understood, family of transcriptional regulators in mammals. They are thought to repress transcription via their interaction with KRAB-associated protein 1 (KAP1), which then assembles a complex of chromatin modifiers to lay down histone marks that are associated with inactive chromatin. Studies of KRAB-ZFP/KAP1-mediated gene silencing, using reporter constructs and ectopically expressed proteins, have shown colocalisation of both KAP1 and repressed reporter target genes to domains of constitutive heterochromatin in the nucleus. However, we show here that although KAP1 does indeed become recruited to pericentric heterochromatin during differentiation of mouse embryonic stem (ES) cells, endogenous KRAB-ZFPs do not. Rather, KRAB-ZFPs and KAP1 relocalise to novel nucleoplasmic foci that we have termed KRAB- and KAP1-associated (KAKA) foci. HP1s can also concentrate in these foci and there is a close spatial relationship between KAKA nuclear foci and PML nuclear bodies. Finally, we reveal differential requirements for the recruitment of KAP1 to pericentric heterochromatin and KAKA foci, and suggest that KAKA foci may contain sumoylated KAP1 - the form of the protein that is active in transcriptional repression.
Resumo:
Zinc oxide (ZnO) is one of the most intensely studied wide band gap semiconductors due to its many desirable properties. This project established new techniques for investigating the hydrodynamic properties of ZnO nanoparticles, their assembly into useful photonic structures, and their multiphoton absorption coefficients for excitation with visible or infrared light rather than ultraviolet light. The methods developed are also applicable to a wide range of nanoparticle samples.
Resumo:
Bismuth zinc niobium oxide (BZN) was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.
Resumo:
Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.
Resumo:
We show that the cluster ion concentration (CIC) in the atmosphere is significantly suppressed during events that involve rapid increases in particle number concentration (PNC). Using a neutral cluster and air ion spectrometer, we investigated changes in CIC during three types of particle enhancement processes – new particle formation, a bushfire episode and an intense pyrotechnic display. In all three cases, the total CIC decreased with increasing PNC, with the rate of decrease being greater for negative CIC than positive. We attribute this to the greater mobility, and hence the higher attachment coefficient, of negative ions over positive ions in the air. During the pyrotechnic display, the rapid increase in PNC was sufficient to reduce the CIC of both polarities to zero. At the height of the display, the negative CIC stayed at zero for a full 10 min. Although the PNCs were not significantly different, the CIC during new particle formation did not decrease as much as during the bushfire episode and the pyrotechnic display. We suggest that the rate of increase of PNC, together with particle size, also play important roles in suppressing CIC in the atmosphere.
Resumo:
Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.
Resumo:
Recently, studies have identified high zinc levels in various environmental resources, and excessive intake of zinc has long been considered to be harmful to human health. The aim of this research was to investigate the effectiveness of tricalcium aluminate (C3A) as a removal agent of zinc from aqueous solution. Inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize such removal behavior. The effects of various factors such as pH influence, temperature and contact time were investigated. The adsorption capacity of C3A for Zn2+ was computed to be up to 13.73 mmol g−1, and the highest zinc removal capacity was obtained when the initial pH of Zn(NO3)2 solution was between 6.0 and 7.0, with temperature around 308 K. The XRD analysis showed that the resultant products were ZnAl-LDHs. Combined with the analysis of solution component, it was proved the existence of both precipitation and cation exchange in the removal process. From the experimental results, it was clear that C3A could be potentially used as a cost-effective material for the removal of zinc in aqueous environment.
Resumo:
A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (-1.2 x 103 cm-3 | +1.6 x 103 cm-3) and 4.4 x 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.
Resumo:
This work describes the fabrication of nanostructured copper electrodes using a simple potential cycling protocol that involves oxidation and reduction of the surface in an alkaline solution. It was found that the inclusion of additives, such as benzyl alcohol and phenylacetic acid, has a profound effect on the surface oxidation process and the subsequent reduction of these oxides. This results in not only a morphology change, but also affects the electrocatalytic performance of the electrode for the reduction of nitrate ions. In all cases, the electrocatalytic performance of the restructured electrodes was significantly enhanced compared with the unmodified electrode. The most promising material was formed when phenylacetic acid was used as the additive. In addition, the reduction of residual oxides on the surface after the modification procedure to expose freshly active reaction sites on the surface before nitrate reduction was found to be a significant factor in dictating the overall electrocatalytic activity. It is envisaged that this approach offers an interesting way to fabricate other nanostructured electrode surfaces.
Resumo:
Using a combination of multivariate statistical techniques and the graphical assessment of major ion ratios, the influences on hydrochemical variability of coal seam gas (or coal bed methane) groundwaters from several sites in the Surat and Clarence-Moreton basins in Queensland, Australia, were investigated. Several characteristic relationships between major ions were observed: 1) strong positive linear correlation between the Na/Cl and alkalinity/Cl ratios; 2) an exponentially decaying trend between the Na/Cl and Na/alkalinity ratios; 3) inverse linear relationships between increasing chloride concentrations and decreasing pH for high salinity groundwaters, and; 4) high residual alkalinity for lower salinity waters, and an inverse relationship between decreasing residual alkalinity and increasing chloride concentrations for more saline waters. The interpretation of the hydrochemical data provides invaluable insights into the hydrochemical evolution of coal seam gas (CSG) groundwaters that considers both the source of major ions in coals and the influence of microbial activity. Elevated chloride and sodium concentrations in more saline groundwaters appear to be influenced by organic-bound chlorine held in the coal matrix; a sodium and chloride ion source that has largely been neglected in previous CSG groundwater studies. However, contrastingly high concentrations of bicarbonate in low salinity waters could not be explained, and are possibly associated with a number of different factors such as coal degradation, methanogenic processes, the evolution of high-bicarbonate NaHCO3 water types earlier on in the evolutionary pathway, and variability in gas reservoir characteristics. Using recently published data for CSG groundwaters in different basins, the characteristic major ion relationships identified for new data presented in this study were also observed in other CSG groundwaters from Australia, as well as for those in the Illinois Basin in the USA. This observation suggests that where coal maceral content and the dominant methanogenic pathway are similar, and where organic-bound chlorine is relatively abundant, distinct hydrochemical responses may be observed. Comparisons with published data of other NaHCO3 water types in non-CSG environments suggest that these characteristic major ion relationships described here can: i) serve as an indicator of potential CSG groundwaters in certain coal-bearing aquifers that contain methane; and ii) help in the development of strategic sampling programmes for CSG exploration and to monitor potential impacts of CSG activities on groundwater resources.
Resumo:
In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.
Resumo:
The EPR spectra of microwave-prepared 70NaPO(3):30PbO glasses containing different weight percentages of manganese ions have been studied. The EPR spectra exhibit a well-resolved hyperfine pattern at g(eff) approximate to 2.0. Optical absorption, fluorescent emission and excitation spectra of the glasses have been examined. The absorption spectrum exhibits a peak near 500 nm and this has been attributed to the spin-allowed E-5(g) --> T-5(2g) transition of Mn3+ ions. The emission spectrum shows a band at 595 nm which has been assigned to the T-4(1g)(G) --> (6)A(1g)(S) spin-forbidden transition of Mn2+ ions in octahedral coordination. Concentration quenching of fluorescence was found to occur above 0.75 wt% of Mn2+ ions. The excitation spectra exhibit four bands characteristic of Mn2+ ions in octahedral coordination. From the observed band positions of the excitation spectra, the crystal field parameter D-q and the Racah interelectronic repulsion parameters, B and C have been calculated. A structural model is proposed based on the IR, Raman and MASNMR studies according to which Mn2+ ions are likely to occupy sites similar to Na+ ions in these glasses.