989 resultados para ZALDUMBIDE, GONZALO, 1883-1965
Resumo:
Se cita la presencia de S. wygodzinskyi Roback, 1965 (Diptera: Chironomidae) en dos áreas diferentes de Perú, mucho más al norte de la distribución original y viviendo sobre ninfas del género Meridialaris sp. (Ephemeroptera: Leptophlebiidae), ambas localidades se sitúan en ríos de la zona alta de los Andes, siempre en agua muy frías. Se señalan algunos detalles de la morfología de las larvas y las pupas no bien descritos en los trabajos originales y se discute la posición de los quironómidos sobre su hospedador.
Resumo:
The two goals of this project stated in the Proposal were: (1) study lime diffusion in clayey soils, and (2) find the role of MgO in soil-dolomitic lime stabilization. Because of the practice significance of these goals we temporarily overstaffed this project, giving somewhat a "crash" program. As a result, proposed work was finished up early (as were the funds), and more important, some of the findings were early enough and of sufficient merit to put into field trials in the Fall of 1964. The work now being completed and the funds all being expended, this Final Report is therefore submitted before the anticipated project termination date.
Resumo:
Project 540-S of the Iowa Engineering Experiment Station (Project HR-107, Iowa Highway Research Board) was started in June, 1964. During the year ten 2-gallon samples of asphalt cement and ten 100-lb samples of asphaltic concrete were studied by the personnel of the Bituminous Research Laboratory, Iowa State University. The samples were from tanks and mixers of asphalt plants at various Iowa State Highway Commission paving jobs. The laboratory's research was in two phases: 1. To ascertain if properties of asphalt cement changed during mixing operations. 2. To determine whether one or more of the several tests of asphalt cements were enough to indicate behavior of the heated asphalt cements. If the reliability of one or more tests could be proved, the behavior of asphalts would be more simply and rapidly predicted.
Resumo:
The problems of laboratory compaction procedures, the effect of gradation and mineralogy on shearing strength, and effect of stabilizing agents on shearing strength of granular base course mixes are discussed. For the materials tested, a suitable laboratory compaction procedure was developed which involves the use of a vibratory table to prepare triaxial test specimens. A computer program has been developed to facilitate the analysis of the test data of the effect of gradation and mineralogy on shearing strength of soils. The effects of the following materials have been selected for evaluation as stabilizing agents’ portland cement, sodium and calcium chloride, lime organic cationic waterproofer, and asphaltic materials.
Resumo:
The interrelation of curing time, curing temperature, strength, and reactions in lime-bentonite-water mixtures was examined. Samples were molded at constant density and moisture content and then cured for periods of from 1 to 56 days at constant temperatures that ranged from 5C to 60C. After the appropriate curing time the samples were tested for unconfined compressive strength. The broken samples were then analyzed by x-ray diffractometer and spectrophotometer to determine the identity of the reaction products present after each curing period. It was found that the strength gain of lime-clay mixtures cured at different temperatures is due to different phases of the complex reaction, lime & clay to CSH(gel) to CSH(II) to CSH(I) to tobermorite. The farther the reaction proceeds, the higher the strength. There was also evidence of lattice substitutions in the structure of the calcium silicate hydrates at curing temperatures of 50C and higher. No consistent relationship between time, temperature, strength, and the S/A ration of reaction products existed, but in order to achieve high strengths the apparent C/S ration had to be less than two. The curing temperature had an effect on the strength developed by a given amount of reacted silica in the cured lime-clay mixture, but at a given curing temperature the cured sample that had the largest amount of reacted silica gave the highest strength. Evidence was found to indicate that during the clay reaction some calcium is indeed adsorbed onto the clay structure rather than entering into a pozzolanic reaction. Finally, it was determined that it is possible to determine the amount of silica and alumina in lime-clay reaction products by spectrophotometric analysis with sufficient accuracy for comparison purposes. The spectrophotometric analysis techniques used during the investigation were simple and were not time consuming.
Resumo:
The liquid and plastic limits of a soil are consistency limits that were arbitrarily chosen by Albert Atterberg in 1911. Their determination is by strictly empirical testing procedures. Except for the development of a liquid limit device and subsequent minor refinements the method has remained basically unchanged for over a half century. The empirical determination of an arbitrary limit would seem to be contrary to the very foundations of scientific procedures. However, the tests are relatively simple and the results are generally acceptable and valuable in almost every conceivable use of soil from an engineering standpoint. Such a great volume of information has been collected and compiled by application of these limits to cohesive soils, that it would be impractical and virtually impossible to replace the tests with a more rational testing method. Nevertheless, many believe that the present method is too time consuming and inconsistent. Research was initiated to investigate the development of a rapid and consistent method by relating the limits to soil moisture tension values determined by porous plate and pressure membrane apparatus. With the moisture tension method, hundreds of samples may be run at one time, operator variability is minimal, results are consistent, and a high degree of correlation to present liquid limit tests is possible.
Resumo:
When mixing asphalt in thin film and at high temperatures, as in the production of asphalt concrete, it has been shown that asphalt will harden due essentially to two factors: (1) losses of volatiles and (2) oxidation. The degree of hardening as expressed by percent loss in penetration varied from as low as 7% to about 57% depending on mixing temperatures, aggregate types, gradation, asphalt content, penetration and other characteristics of asphalts used. Methods used to predict hardening during mixing include loss on heat and thin film oven tests, with the latter showing better correlation with the field findings. However, information on other physical and chemical changes that may occur as a result of mixing in the production of hot-mix asphaltic concrete is limited, The purpose of this research project was to ascertain the changes of asphalt cement properties, both physical and chemical, during mixing operation and to determine whether one or more of the several tests of asphalt cements were critical enough to indicate these changes.
Resumo:
This report briefly describes the progress of HR-110 of the Iowa Highway Research Board.
Resumo:
The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.