955 resultados para Yttria-stabilized tetragonal zirconia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microscopic mechanism leading to stabilization of cubic and tetragonal forms of zirconia (ZrO2) is analyzed by means of a self-consistent tight-binding model. Using this model, energies and structures of zirconia containing different vacancy concentrations are calculated, equivalent in concentration to the charge compensating vacancies associated with dissolved yttria (Y2O3) in the tetragonal and cubic phase fields (3.2 and 14.4% mol, respectively). The model is shown to predict the large relaxations around an oxygen vacancy, and the clustering of vacancies along the 111 directions, in good agreement with experiments and first principles calculations. The vacancies alone are shown to explain the stabilization of cubic zirconia, and the mechanism is analyzed. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the Rietveld method, phases of ceria-doped zirconia, calcined at temperatures of 600 and 900 degrees C, were quantitatively analysed for different concentrations of ceria. The results show that the stabilization of zirconia depends on the dopant concentration and calcination temperature. Moreover, the theoretical calculation using the ab initio Hartree-Fock-Roothaan method indicates that the most stable phases for ceria-stabilized zirconia are cubic or tetragonal, in accordance with experimental results. (C) 1999 Kluwer Academic Publishers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A YSZ@Al2O3 nanocomposite was obtained by Al 2O3 coating on the surface of yttrium stabilized zirconia via a polymeric precursor method. The resulting core-shell structures were characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscopy and PL spectra. The TEM micrographs clearly show a homogeneous Al2O3 shell around the ZrO2 core. The observed PL is related to surface-interface defects. Such novel technologies can, in principle, explore materials which are not available in the bulk single crystal form but their figure-of-merit is dramatically dependent on the surface-interface defect states. © 2013 This journal isThe Royal Society of Chemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A YSZ@Al2O3 nanocomposite was obtained by Al2O3 coating on the surface of yttrium stabilized zirconia via a polymeric precursor method. The resulting core–shell structures were characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscopy and PL spectra. The TEM micrographs clearly show a homogeneous Al2O3 shell around the ZrO2 core. The observed PL is related to surface–interface defects. Such novel technologies can, in principle, explore materials which are not available in the bulk single crystal form but their figure-of-merit is dramatically dependent on the surface–interface defect states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noble metal substituted ionic catalysts were synthesized by solution combustion technique. The compounds were characterized by X-ray diffraction, FT-Raman spectroscopy, and X-ray photoelectron spectroscopy. Zirconia supported compounds crystallized in tetragonal phase. The solid solutions of ceria with zirconia crystallized in fluorite structure. The noble metals were substituted in ionic form.The water-gas shift reaction was carried out over the catalysts.Negligible conversions were observed with unsubstituted compounds. The substitution of a noble metal ion was found to enhance the reaction rate. Equilibrium conversion was obtained below 250 degrees C in the presence of Pt ion substituted compounds. The formation of Bronsted acid-Bronsted base pairs was proposed to explain the activity of zirconia catalysts. The effect of oxide ion vacancies on the reactions over substituted ceria-zirconia solid solutions was established. (c)2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature-dependent x-ray powder-diffraction study of the tetragonal compositions of PbTiO3-BiFeO3 series has revealed that, unlike for all the known ferroelectric perovskites, the compositions exhibiting giant tetragonality is stabilized from the cubic phase via a complex transition pathway which involve (i) formation of minor monoclinic phase with a large pseudotetragonality along with an intermediate tetragonal phase (major) with a small tetragonality, (ii) gradual vanishing of the intermediate tetragonal phase and concomitant increase in the monoclinic regions, and finally (iii) gradual transformation of the monoclinic phase to the tetragonal phase with giant tetragonality.The system seems to adopt such a complex transition pathway to create amicrostructure with very large number of domains and interfaces for stress relief, which would not have been possible in case of a direct cubic-tetragonal transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.