927 resultados para Wood flour
Resumo:
Arsenic is accumulated by free-living small mammals, but there is little information on the resultant concentrations in different tissues other than liver and kidney. Such information is important because the severity of toxicological effects may be related to the amount of arsenic accumulated in specific organs, and the availability of arsenic to predators is, in part, dependent on which tissues accumulate arsenic. The objective of this study was to quantify the arsenic concentrations and the percentage of the total body burden (%TBB) accumulated in different body tissues of free-living small mammals and to determine how these factors varied with severity of habitat contamination. Arsenic concentrations were measured in various tissues of wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) from a range of arsenic-contaminated sites in southwest Britain. Arsenic concentrations in the gastrointestinal (GI) tract (including contents), liver, kidneys, spleen, lung, femur, and fur of both species varied significantly between sites and were higher in mice and voles from heavily contaminated areas. Heart and brain arsenic concentrations did not vary with degree of environmental contamination. The GI tract and excised carcass contained roughly equal amounts of arsenic and, in sum, comprised 75-85% of the TBB on uncontaminated sites and 90-99% on contaminated sites. Although the excised carcass contains about half of the TBB, its importance in food-chain transfer of arsenic to predators may depend on the bioavailability of arsenic sequestered in fur. In contrast, the GI tract and its contents, provided that it is consumed, will always be a major transfer pathway for arsenic to predators, regardless of the severity of habitat contamination.
Resumo:
Arsenic can be highly toxic to mammals but there is relatively little information on its transfer to and uptake by free-living small mammals. The aim of this study was to determine whether intake and accumulation of arsenic by wild rodents living in arsenic-contaminated habitats reflected environmental levels of contamination and varied between species, sexes and age classes. Arsenic concentrations were measured in soil, litter, wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) from six sites which varied in the extent to which they were contaminated. Arsenic residues on the most contaminated sites were three and two orders of magnitude above background in soil and litter, respectively. Arsenic concentrations in the stomach contents, liver, kidney and whole body of small mammals reflected inter-site differences in environmental contamination. Wood mice and bank voles on the same sites had similar concentrations of arsenic in their stomach contents and accumulated comparable residues in the liver, kidney and whole body. Female bank voles, but not wood mice, had significantly higher stomach content and liver arsenic concentrations than males. Arsenic concentration in the stomach contents and body tissues did not vary with age class. The bioaccumulation factor (ratio of arsenic concentration in whole body to that in the diet) in wood mice was not significantly different to that in bank voles and was 0.69 for the two species combined, indicating that arsenic was not bioconcentrated in these rodents. Overall, this study has demonstrated that adult and juvenile wood mice and bank voles are exposed to and accumulate similar amounts of arsenic on arsenic-contaminated mine sites and that the extent of accumulation depends upon the level of habitat contamination.
Resumo:
A forest ecosystem was contaminated as a result of a fire involving 600 t of PVC. A wide range of 2,3,7,8-substituted dioxin and furan congeners were elevated (by up to 4-fold) on soil adjacent to the factory compared to a site 200 m from the factory perimeter. Livers of wood mice (Apodemus sylvaticus) caught on these areas were also analysed for dioxins and furans. Toxic equivalents (TEQs) were 9-fold higher in wood mice caught on the site 10 m from the factory perimeter compared with the site 200 m from the perimeter, with individual 2,3,7,8-substituted congeners being elevated by up to 30-fold. Wood mouse liver TEQs were found to be highly correlated with cadmium kidney concentrations, cadmium also being found at elevated concentrations at the accident site. There was also a significant positive correlation between wood mouse liver TEQs and relative liver weights (wet weights expressed as a percentage of total body weight). The results of this study are discussed in the wider context of dioxin contamination in the environment.
Resumo:
Numerous reports of successful radiocarbon dating of cremated bones have emerged during the last decade. The success of radiocarbon dating cremated bones depends on the temperature during burning and the degree of recrystallisation of the inorganic bone matrix. During cremation bones undergo major morphological and mineralogical changes which have raised some interesting questions and discussion on the origin of the carbon source in archaeologically cremated bones. Recent laboratory experiments reveal that the properties of the combustion atmosphere play a significant role regarding the source carbon in cremated bones. Thus radiocarbon dating cremated bones is potentially dating the wood used for the cremation fire. Here we compare a high precision radiocarbon dated human bone with an associated dendrochronological age from an oak coffin. We find that the age discrepancy between the dendrochronological age and the cremated bone of 73 ± 26 14C yr is best accounted for by the so called ‘old wood’ effect.
Resumo:
Chlorination of wheat flour in the EU countries has been replaced in recent years, to some extent, by heat treated flour which is used to produce high ratio cakes. Heat treated flour allows high ratio recipes to be developed which generate products with longer shelf life, finer texture, moist crumb and sweeter taste. The mechanism by which heat treatment improves the flour is not fully understood, but it is known that during the heat treatment process, protein denaturation and partial gelatinisation of the starch granules occurs, as well as an increase in batter viscosity. Therefore, it is important to optimize the flour heat treatment process, in order to enhance baking quality. Laboratory preparation of heat treated base wheat flour (culinary, soft, low protein) was carried out in a fluidised bed drier using a range of temperatures and times. The gluten was extracted from the final product and its quality was tested, to obtain objective and comparative information on the extent of protein denaturation. The results indicated that heat treatment of flour decreases gluten extensibility and partial gelatinisation of the starch granules occurred. After heat treatment the gluten appeared to retain moisture. The optimum time/temperature for the heat treatment of base flour was 120-130°C for 30 min with moisture content of ˜12.5%.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose d O and d H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information. © 2012 Wolfe et al.
Resumo:
In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer (Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for
the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further
emphasizes the superior phytonutrient composition of the aleurone layer.
INTRODUCTION
Wheat is a valuable source of betaine, choline (1, 2), B
vitamins, vitamin E, and a number of minerals, including iron,
zinc, magnesium, and phosphorus (3). Epidemiological studies
indicate that whole-grain consumption is protective against
several chronic diseases (4-12). It has not been fully elucidated
how whole-grain cereals or specific fractions (13) exert their
protective effect, but it is thought to be due to their content of
several nutrients associated with the reduced risk of disease.
Conventionally, whole grain is separated during milling into
bran, germ, and flour (14). The nutrient composition of these
fractions differ markedly; refined wheat flour contains approximately
50% less vitamins and minerals than whole-grain
flour (
Resumo:
Three isolates each, of nine different Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe, and the impact of temperature (20-60 degrees C), osmotic and matric potential (-0.5 to - 8.0 MPa), and their interactions on in vitro growth compared. Generally, there was no significant difference between growth of isolates of the same species in relation to temperature. Temperature relationships of the species studied correlated well with their geographic distributions. Species occurring in hot, dry regions tolerated a wide temperature range, with some showing unusually high thermotolerance (55 degrees, T. socotrana, T. cingulata and T. cervina). There were significant intra-strain differences for individual species in relation to solute potential on glycerol-modified media. Generally, growth of ail species was better on glycerol- and KCl-modified osmotic media than on a metrically-modified medium (PEG 8000) at 25, 30 and 37 degrees. The limits for growth on the osmotic media were significantly wider than matric medium, being - 4.5 to - 5.0 and - 2.5 to - 4.5 MPa, respectively. An Irpex sp. grew at lower water potentials than all other species, with good growth at - 7.0 MPa. This study suggests that the capacity of these fungi for effective growth over a range of temperatures, osmotic and matric potentials contributes to their rapid wood decay capacities in tropical climates.
Resumo:
Nine species of Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe and analysed for cellulases, ligninases, extracellular phenolases and wood degrading ability for the first time. Cellulase enzyme activities varied widely among the species. After 15 d growth exo-glucanase activity had increased in the majority of species whilst Biter paper activity showed the opposite trend, being greatly reduced in all species on day 15 compared to day IO. Endo-glucanase activity was relatively uniform at both sampling times. The fungi were more active against water soluble cellulose derivatives than filter paper cellulase. In all the fungi tested, cellulose activity on filter paper was significantly less than endo- and exo-glucanase activities. The highest cellulase activity was expressed by Cerrena meyenii (683 U mg(-1)) Phaeotrametes decipiens, Trametes modesta, and T. pocas also expressed relatively high cellulase activity on all types of cellulose tested. All Trametes species tested positive for extracellular phenol oxidases whilst Fomotopsis spragueii and Irpex stereoides tested negative. Ail but one of the Trametes species in the study were able to degrade two different lignin preparations in tests for lignin degradation. T. menziesii was unable to degrade both lignin preparations although it had tested positive for production of extracellular oxidase. The species in this study degraded hardwood to a greater extent than softwood. Eight of them caused more than 80% dry weight loss of wood blocks during 70 d incubation. Those fungi that expressed high cellulase activity also caused high weight loss on wood.
Resumo:
The visibility of using municipal bio-waste, wood shavings, as a potential feedstock for ethanol production was investigated. Dilute acid hydrolysis of wood shavings with H3PO4 was undertaken in autoclave parr reactor. A combined severity factor (CSF) was used to integrate the effects of hydrolysis times, temperature and acid concentration into a single variable. Xylose concentration reached a maximum value of 17 g/100 g dry mass corresponding to a yield of 100% at the best identified conditions of 2.5 wt.% H3PO4, 175 degrees C and 10 min reaction time corresponding to a CSF of 1.9. However, for glucose, an average yield of 30% was obtained at 5 wt.% H3PO4, 200 degrees C and 10 min. Xylose production increased with increasing temperature and acid concentration, but its transformation to the degradation product furfural was also catalysed by those factors. The maximum furfural formed was 3 g/100 g dry mass, corresponding to the 24% yield. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Hundsalm ice cave located at 1520 m altitude in a karst region of western Austria contains up to 7-m-thick deposits of snow, firn and congelation ice. Wood fragments exposed in the lower parts of an ice and firn wall were radiocarbon accelerator mass spectrometry (AMS) dated. Although the local stratigraphy is complex, the 19 individual dates - the largest currently available radiocarbon dataset for an Alpine ice cave - allow to place constraints on the accumulation and ablation history of the cave ice. Most of the cave was either ice free or contained only a small firn and ice body during the 'Roman Warm Period'; dates of three wood fragments mark the onset of firn and ice build-up in the 6th and 7th century ad. In the central part of the cave, the oldest samples date back to the 13th century and record ice growth coeval with the onset of the 'Little Ice Age'. The majority of the ice and firn deposit, albeit compromised by a disturbed stratigraphy, appears to have been formed during the subsequent centuries, supported by wood samples from the 15th to the 17th century. The oldest wood remains found so far inside the ice is from the end of the Bronze Age and implies that local relics of prehistoric ice may be preserved in this cave. The wood record from Hundsalm ice cave shows parallels to the Alpine glacier history of the last three millennia, for example, the lack of preserved wood remains during periods of known glacier minima, and underscores the potential of firn and ice in karst cavities as a long-term palaeoclimate archive, which has been degrading at an alarming rate in recent years. © The Author(s) 2013.