978 resultados para Wood River Drainage and Levee District (Ill.)
Resumo:
Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific d13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific d13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific d13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific d13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.
Resumo:
Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL
Resumo:
In this study we analyze the feeding ecology and trophic relationships of some of the main fish species (Soleidae, Moronidae, Mullidae, Sparidae, Mugilidae, and Batrachoididae) of the lower Estuary of the Guadiana River and the Castro Marim e Vila Real de Santo Antonio Salt Marsh. We examined the stomachs of 1415 fish caught monthly between September 2000 and August 2001. Feeding indices and coefficients were determined and used along with the results of multivariate analysis to develop diagrams of trophic interactions (food webs). Results show that these species are largely opportunistic predators. The most important prey items are amphipods, gobies (Gobiidae), shrimps (Palaemon serratus and Crangon crangon), and polychaete worms. The lower Estuary and associated salt marshes are important nurseries and feeding grounds for the species studied. In this area, it is therefore important to monitor the effects of changes in river runoff, nutrient input, and temperature that result from construction of the Alqueva Dam upstream. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In a recent paper [1] Reis showed that both the principles of extremum of entropy production rate, which are often used in the study of complex systems, are corollaries of the Constructal Law. In fact, both follow from the maximization of overall system conductivities, under appropriate constraints. In this way, the maximum rate of entropy production (MEP) occurs when all the forces in the system are kept constant. On the other hand, the minimum rate of entropy production (mEP) occurs when all the currents that cross the system are kept constant. In this paper it is shown how the so-called principle of "minimum energy expenditure" which is often used as the basis for explaining many morphologic features in biologic systems, and also in inanimate systems, is also a corollary of Bejan's Constructal Law [2]. Following the general proof some cases namely, the scaling laws of human vascular systems and river basins are discussed as illustrations from the side of life, and inanimate systems, respectively.
Resumo:
Govan was an ancient settlement, former burgh and now a district in Glasgow, Scotland. It is situated 2.5 miles west of Glasgow City Centre, on the south bank of the River Clyde, opposite the mouth of the River Kelvin and the district of Patrick. Archaeological evidence shows that there was a church and burial ground here as early as 600-800 AD. Numerous carved tombstones dating from 900- 1100 have been found. Govan was a village comprised of thatched cottages until well into the 19th century. It became a shipbuilding town in the early 19th century.
Resumo:
Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
The rivers are considered as the life line of any country since they make water available for our domestic, industrial and recreational functions. The quality of river water signifies the health status and hygienic aspects of a particular region, but the quality of these life lines is continuously deteriorating due to discharge of sewage, garbage and industrial effluents into them. Thrust on water demand has increased manifolds due to the increased population, therefore tangible efforts to make the water sources free from pollution is catching attention all across the globe. This paper attempts to highlight the trends in water quality change of River Beas, right from Manali to Larji in India. This is an important river in the state of Himachal Pradesh and caters to the need of water for Manali and Kullu townships, besides other surrounding rural areas. The Manali-Larji Beas river stretch is exposed to the flow of sewage, garbage and muck resulting from various project activities, thereby making it vulnerable to pollution. In addition, the influx of thousands of tourists to these towns also contributes to the pollution load by their recreational and other tourist related activities. Pollution of this river has ultimately affected the livelihood of local population in this region. Hence, water quality monitoring was carried out for the said stretch between January, 2010 and January, 2012 at 15 various locations on quarterly basis, right from the upstream of Manali town and up to downstream of Larji dam. Temperature, color, odor, D.O. , pH, BOD, TSS, TC and FC has been the parameters that were studied. This study gives the broad idea about the characteristics of water at locations in the said river stretch, and suggestions for improving water quality and livelihood of local population in this particular domain.
Resumo:
This report includes the results of geological investigation of the Clinton Mining District and the Hidden Treasure Mine.The Clinton Mining District is an unorganized mining district situated in the Garnet Range two and one-half miles northeast of the town of Clinton, Montana, which is on the Northern Pacific Railway and the Chicago, Milwaukee, St. Paul, and Pacific Railroad seventeen miles east of the city of Missoula. The district is in the same range of mountains as the Garnet Mining District and the drainage from the district covered is to the south into the Hell Gate or Clarks Fork of the Columbia River. The main stream is known as Trail creek, which runs in a southerly direction from the area studied.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
Concentrations of cations (Na(+), Ca(2+), Mg(2+), K(+), NH(4) (+)), anions (HCO(3) (-), Cl(-), NO(3) (-), SO(4) (2-), PO(4) (3-)) and suspended sediments in the Madeira River water were determined near the city of Porto Velho (RO), in order to assess variation in water chemistry from 2004 to 2007. Calcium and bicarbonate were the dominant cation and anion, respectively. Significant seasonal differences were found, with highest concentrations occurring during the dry season, as expected from the drainage of Andean carbonate-rich substratum. Interannual variations were also observed, but became significant only when annual average discharge was 25% less than normal. Under this atypical discharge condition, bicarbonate was replaced by sulfate, and higher suspended sediment concentrations and loads were also observed. Compared to previously published studies, it appears that no significant changes in water chemistry have occurred during the last 20-30 years, although differences in approaches and sampling designs among this and previous studies may not allow detection of modest changes. The calculated suspended sediment load reported here is close to the values presented elsewhere, reinforcing the relative importance of this river as a sediment supplier for the Amazon Basin. Seasonality has a significant control on the chemistry of Madeira River waters, and severe decrease in discharge due to anthropogenic changes, such as construction of reservoirs or the occurrence of drier years-a plausible consequence of global climate change-may lead to modification in the chemical composition as well in the sediment deliver to the Amazon River.
Resumo:
Background The aim if this study was to compare percutaneous drainage (PD) of the gallbladder to emergency cholecystectomy (EC) in a well-defined patient group with sepsis related to acute calculous/acalculous cholecystitis (ACC/AAC).Methods Between 2001 and 2007, all consecutive patients of our ICU treated by either PD or EC were retrospectively analyzed. Cases were collected from a prospective database. Percutaneous drainage was performed by a transhepatic route and EC by open or laparoscopic approach. Patients' general condition and organ dysfunction were assessed by two validated scoring systems (SAPS II and SOFA, respectively). Morbidity, mortality, and long-term outcome were systematically reviewed and analyzed in both groups.Results Forty-two patients [median age = 65.5 years (range = 32-94)] were included; 45% underwent EC (ten laparoscopic, nine open) and 55% PD (n = 23). Both patient groups had similar preoperative characteristics. Percutaneous drainage and EC were successful in 91 and 100% of patients, respectively. Organ dysfunctions were similarly improved by the third postoperative/postdrainage days. Despite undergoing PD, two patients required EC due to gangrenous cholecystitis. The conversion rate after laparoscopy was 20%. Overall morbidity was 8.7% after PD and 47% after EC (P = 0.011). Major morbidity was 0% after PD and 21% after EC (P = 0.034). The mortality rate was not different (13% after PD and 16% after EC, P = 1.0) and the deaths were all related to the patients' preexisting disease. Hospital and ICU stays were not different. Recurrent symptoms (17%) occurred only after ACC in the PD group.Conclusions In high-risk patients, PD and EC are both efficient in the resolution of acute cholecystitis sepsis. However, EC is associated with a higher procedure-related morbidity and the laparoscopic approach is not always possible. Percutaneous drainage represents a valuable intervention, but secondary cholecystectomy is mandatory in cases of acute calculous cholecystitis.
Resumo:
The Champlain Sea clays of Eastern Canada are incised by numerous rivers. Their slopes have been modified by landslides: on the Chacoura River near Trois-Rivières (Quebec), several large landslide scars, more or less recent, are visible. The role of erosion (channel incision, lateral channel migration and erosion of slopes due to agricultural drainage) as a trigger of these landslides is important. The aim of this study is to understand how erosion and landslides are related to valley development. From a detailed analysis of aerial photographs and DEMs, a map of the phenomena has been drawn by identifying various elements such as landslides, limits of the slope, position of the channel, and the area covered by forest. It is shown that channel change and erosion are strongly linked to landslides by the fact that they change the bank morphology in an unstable way. A slide in itself is a natural way for the slope to achieve stability. But when it occurs in a stream, it creates a disturbance to the stream flow enhancing local erosion which may change the river path and generate more erosion downstream or upstream resulting in more slides. Cross-valley sections and a longitudinal profile show that landslides are a major factor of valley formation. It appears that the upper part of the Chacoura River valley is still unaffected by landslides and has V-shaped sections. The lower part has been subject to intense erosion and many landslide scars can be seen. This shows that the valley morphology is transient, and that future activity is more likely to occur in the upper part of the river. Therefore the identification of areas prone to erosion will help determine the possible location of future large landslides just like the ones that occurred in the lower part.
Resumo:
River flow in Alpine environments is likely to be highly sensitive to climate change because of the effects of warming upon snow and ice, and hence the intra-annual distribution of river runoff. It is also likely to be influenced strongly by human impacts both upon hydrology (e.g. flow abstraction) and river regulation. This paper compares the river flow and sediment flux of two Alpine drainage basins over the last 5 to 7 decades, one that is largely unimpacted by human activities, one strongly impacted by flow abstraction for hydroelectricity. The analysis shows that both river flow and sediment transport capacity are strongly dependent upon the effects of temperature and precipitation availability upon snow accumulation. As the latter tends to increase annual maximum flows, and given the non-linear form of most sediment transport laws, current warming trends may lead to increased sedimentation in Alpine rivers. However, extension to a system impacted upon by flow abstraction reveals the dominant effect that human activity can have upon river sedimentation but also how human response to sediment management has co-evolved with climate forcing to make disentangling the two very difficult.
Resumo:
The Rio Tinto river in SW Spain is a classic example of acid mine drainage and the focus of an increasing amount of research including environmental geochemistry, extremophile microbiology and Mars-analogue studies. Its 5000-year mining legacy has resulted in a wide range of point inputs including spoil heaps and tunnels draining underground workings. The variety of inputs and importance of the river as a research site make it an ideal location for investigating sulphide oxidation mechanisms at the field scale. Mass balance calculations showed that pyrite oxidation accounts for over 93% of the dissolved sulphate derived from sulphide oxidation in the Rio Tinto point inputs. Oxygen isotopes in water and sulphate were analysed from a variety of drainage sources and displayed delta O-18((SO4-H2O)) values from 3.9 to 13.6 parts per thousand, indicating that different oxidation pathways occurred at different sites within the catchment. The most commonly used approach to interpreting field oxygen isotope data applies water and oxygen fractionation factors derived from laboratory experiments. We demonstrate that this approach cannot explain high delta O-18((SO4-H2O)) values in a manner that is consistent with recent models of pyrite and sulphoxyanion oxidation. In the Rio Tinto, high delta O-18((SO4-H2O)) values (11.2-13.6 parts per thousand) occur in concentrated (Fe = 172-829 mM), low pH (0.88-1.4), ferrous iron (68-91% of total Fe) waters and are most simply explained by a mechanism involving a dissolved sulphite intermediate, sulphite-water oxygen equilibrium exchange and finally sulphite oxidation to sulphate with O-2. In contrast, drainage from large waste blocks of acid volcanic tuff with pyritiferous veins also had low pH (1.7). but had a low delta O-18((SO4-H2O)) value of 4.0 parts per thousand and high concentrations of ferric iron (Fe(III) = 185 mM, total Fe = 186 mM), suggesting a pathway where ferric iron is the primary oxidant, water is the primary source of oxygen in the sulphate and where sulphate is released directly from the pyrite surface. However, problems remain with the sulphite-water oxygen exchange model and recommendations are therefore made for future experiments to refine our understanding of oxygen isotopes in pyrite oxidation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)