999 resultados para West Antarctica


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reconstructing past detrital flux and provenance in the Southern Ocean provides information about changes in source regions associated with climate variations and transport pathways. We present a Last Glacial Maximum (LGM) to Holocene comparison of 230Th normalised fluxes combined with sediment provenance data (Pb, Nd and Sr isotopes) from a latitudinal core transect in the eastern Atlantic sector of the Southern Ocean (ODP Leg 177 cores). We compare the radiogenic isotopic composition (IC) of detritus in these cores to that of cores proximal to potential source areas. We observe a well-defined latitudinal Holocene gradient in both detrital flux and provenance of sediment. High detrital fluxes in the north are associated with terrigenous material derived from southern Africa, while low detrital fluxes in the south are associated with supply from southern South America, West Antarctica and the South Sandwich Islands. The data suggest that this well-defined Holocene gradient in detrital flux and sediment provenance is controlled by the flow of the Antarctic Circumpolar Current (ACC) and the position of its frontal zones. The LGM is characterised by 2 to 6 times higher than modern detrital fluxes at most ODP Leg 177 sites. The LGM detrital fluxes do not show a latitudinal trend and suggest a greater supply of glaciogenic detritus sourced from southern South America. Glacial Patagonian outwash sediments (< 5 µm fraction) were analysed and compared to the bulk compositions of the marine sediments. The Pb IC of the Patagonian sediments is very similar to the glacial IC of sediments in the Scotia Sea and at ~ 49° S latitude in the eastern Atlantic sector. We propose that the glacial IC of sediments is controlled by increased delivery of Patagonian detritus initially supplied by glaciers and then transported at depth via the ACC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is very challenging because of the general absence of calcareous (micro-) fossils and the recycling of fossil organic matter. As a consequence, radiocarbon (14C) ages of the acid-insoluble organic fraction (AIO) of the sediments bear uncertainties that are very difficult to quantify. In this paper we present the results of three different chronostratigraphic methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk sediment samples yielded age reversals down-core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom-rich unit yielded similar uncorrected 14C ages ranging from 13,517±56 to 11,543±47 years before present (yr BP). Correction of these ages by subtracting the core-top ages, which are assumed to reflect present-day deposition (as indicated by 21044 Pb dating of the sediment surface at one core site), yielded ages between ca. 10,500 and 8,400 calibrated years before present (cal yr BP). Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1,300 years indicated deposition of the diatom-rich sediments between 14,100 and 11,900 cal yr BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka BP for the diatom-rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves for palaeomagnetic intensity. As a third dating technique we applied conventional 53 radiocarbon dating of the AIO included in acid-cleaned diatom hard parts that were extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5,111±38 and 5,106±38 yr BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the extracted diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom-rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes on other parts of the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Amundsen Sea embayment is a probable site for the initiation of a future collapse of the West Antarctic Ice Sheet. This paper contributes to a better understanding of the transport pathways of subglacial sediments into this embayment at present and during the last glacial period. It discusses the clay mineral composition of sediment samples taken from the seafloor surface and marine cores in order to decipher spatial and temporal changes in the sediment provenance. The most striking feature in the presentday clay mineral distribution is the high concentration of kaolinite, which is mainly supplied by the Thwaites Glacier system and indicates the presence of hitherto unknown kaolinite-bearing sedimentary strata in the hinterland, probably in the Byrd Subglacial Basin. The main illite input is via the Pine Island Glacier. Smectite originates from the erosion of volcanic rocks in Ellsworth Land and western Marie Byrd Land. The clay mineral assemblages in diamictons deposited during the last glacial period are distinctly different from those in corresponding surface sediments. This relationship indicates that glacial sediment sources were different from modern ones, which could reflect changes in the catchment areas of the glaciers and ice streams.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrologic system beneath the Antarctic Ice Sheet is thought to influence both the dynamics and distribution of fast flowing ice streams, which discharge most of the ice lost by the ice sheet. Despite considerable interest in understanding this subglacial network and its affect on ice flow, in situ observations from the ice sheet bed are exceedingly rare. Here we describe the first sediment cores recovered from an active subglacial lake. The lake, known as Subglacial Lake Whillans, is part of a broader, dynamic hydrologic network beneath the Whillans Ice Stream in West Antarctica. Even though "floods" pass through the lake, the lake floor shows no evidence of erosion or deposition by flowing water. By inference, these floods must have insufficient energy to erode or transport significant volumes of sediment coarser than silt. Consequently, water flow beneath the region is probably incapable of incising continuous channels into the bed and instead follows preexisting subglacial topography and surface slope. Sediment on the lake floor consists of till deposited during intermittent grounding of the ice stream following flood events. The fabrics within the till are weaker than those thought to develop in thick deforming beds suggesting subglacial sediment fluxes across the ice plain are currently low and unlikely to have a large stabilizing effect on the ice stream's grounding zone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present revised magnetostratigraphic interpretations for Ocean Drilling Program Sites 1095, 1096, and 1101, cored in sediment drifts located off the Pacific margin of the Antarctic Peninsula. The revised interpretations incorporate a variety of observations and results obtained since the end of Leg 178, of which the most significant are new paleomagnetic measurements from U-channel samples, composite depth scales that allow stratigraphic correlation between multiple holes cored at a site, and revised biostratigraphic interpretations. The U-channel data, which include more than 102,000 paleomagnetic observations from more than 13,400 intervals along U-channel samples, are included as electronic files. The magnetostratigraphic records at all three sites are consistent with sedimentation being continuous over the intervals cored, although the data resolution does not preclude short hiatuses less than a few hundred thousand years in duration. The magnetostratigraphic records start at the termination of Subchron C4Ar.2n (9.580 Ma) at ~515 meters composite depth (mcd) for Site 1095, at the onset of Subchron C3n.2n (4.620 Ma) at ~489.68 mcd for Site 1096, and at the onset of Subchron C2An.1n (3.040 Ma) at 209.38 meters below seafloor for Site 1101. All three sites provide paleomagnetic records that extend upward through the Brunhes Chron.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent values of heat flow data obtained for Greenland and West Antarctica are higher than it was supposed. In West Antarctica, values higher than 200mW/m2were found (Schroeder et al,2014) and in Greenland, values higher than 140 mW/m2 were detected in the Central part (Petrunin et al,2013). Thermal conductivity values of ice are relatively low at atmospheric pressure. This means that if we consider heat flowing by conduction, near the surface of the globe, with this heat flow values, the thermal gradients mill be elevated. A possible reason presented for the high heat flow values in Greenland is the existence of a thin lithosphere. The study of the ice melting near the poles is related with the changes in sea level. Obtaining this parameter is difficult. The time interval with measurement is not enough to obtain clear information about the past..The spatial distribution of heat flow shows clearly zones in the oceans with high values. How can this heat influence water movements in that regions and the temperature in the oceans?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weathering rinds have been used for decades as relative age indicators to differentiate glacial deposits in long Quaternary sequences, but only recently has it been shown that rinds contain long and extensive palaeoenvironmental records that often extend far beyond mere repositories of chemical weathering on both Earth and Mars. When compared with associated palaeosols in deposits of the same age, rinds often carry a zonal weathering record that can be correlated with palaeosol horizon characteristics, with respect to both abiotic and biotic parameters. As demonstrated with examples from the French and Italian Alps, rinds in coarse clastic sediment contain weathering zones that correlate closely with horizon development in associated palaeosols of presumed Late Glacial age. In addition to weathering histories in both rinds and palaeosols, considerable evidence exists to indicate that the black mat impact (12.8 ka) reached the European Alps, a connection with the Younger Dryas readvance supported by both mineral and chemical composition. Preliminary metagenomic microbial analysis using density gradient gel electrophoresis suggests that the eubacterial microbial population found in at least one Ah palaeosol horizon associated with a rind impact site is different from that in other Late Glacial and Younger Dryas surface palaeosol horizons. © 2013 The Geological Society of London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.