850 resultados para Wavelet Packet and Support Vector Machine
Resumo:
Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.
Resumo:
Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.
Resumo:
Clinical and omics data are a promising field of application for machine learning techniques even though these methods are not yet systematically adopted in healthcare institutions. Despite artificial intelligence has proved successful in terms of prediction of pathologies or identification of their causes, the systematic adoption of these techniques still presents challenging issues due to the peculiarities of the analysed data. The aim of this thesis is to apply machine learning algorithms to both clinical and omics data sets in order to predict a patient's state of health and get better insights on the possible causes of the analysed diseases. In doing so, many of the arising issues when working with medical data will be discussed while possible solutions will be proposed to make machine learning provide feasible results and possibly become an effective and reliable support tool for healthcare systems.
Resumo:
A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.
Resumo:
After providing some brief background on Dendrolagus species in Australia, two consecutive surveys of Brisbane’s residents are used to assess public knowledge of tree-kangaroos and the stated degree of support for their conservation in Australia. The responses of participants in Survey I are based on their pre-survey knowledge of wildlife. The same additional set of participants completed Survey II after being provided with information on all the wildlife species mentioned in Survey I. Changes in the attitudes of respondents and their degree of support for the protection and conservation of Australia’s tree-kangaroos are measured, including changes in their contingent valuations and stated willingness to provide financial support for such conservation. Reasons for wanting to protect tree-kangaroos are specified and analyzed. Furthermore, changes that occur in the relative importance of these reasons with increased knowledge are also examined. Support for the conservation of tree-kangaroos is found to increase with the additional knowledge supplied. Furthermore, support for the conservation of Australia’s less well-known tropical mammals is shown to increase relative to better known mammals (icons) present in temperate areas, such as koalas and red kangaroos with this increased knowledge. Possible implications of the results for government conservation policies in Australia are examined.
Resumo:
A numerical modelling strategy has been developed in order to quantify the magnitude of induced stresses at the boundaries of production level and undercut level drifts for various in situ stress environments and undercut scenarios. The results of the stress modelling were in line with qualitative experiential guidelines and a limited number of induced stress measurements documented from caving sites. A number of stress charts were developed which quantify the maximum boundary stresses in drift roofs for varying in situ stress regimes, depths and undercut scenarios. This enabled many of the experiential guidelines to be quantified and bounded. A limited number of case histories of support and support performance in cave mine drifts were compared to support recommendations using the NGI classification system, The stress charts were used to estimate the Stress Reduction Factor for this system. The back-analyses suggested that the NGI classification system might be able to give preliminary estimates of support requirements in caving mines with modifications relating to rock bolt length and the support of production level intersections. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Orebody modelling, support effects and the estimation of recoverable reserves are key parts of open pit optimization studies. A case study is presented on the estimation of recoverable reserves using an implementation of indicator kriging where metal quantity is used to select cutoffs, and support corrections founded on a conditional simulation approach. Mining selectivity is explored in the subsequent optimization study to compare results from indicator kriging of grade estimates on a regular size blocks and indicator kriging estimates on small size blocks. The use of indicator kriging models adjusted for a given selectivity and the use of grade proportions in each block for the optimization study, provide a presentation of the expected ore recovery for a predefined level of selectivity. The case study shows that indicator kriging estimation with full accounting of block grade distributions generates substantially better results in the pit optimization study. In addition, the adverse effects of small blocks and over-smoothing on optimization results are illustrated.
Resumo:
O estresse pode afetar qualquer pessoa, independente de idade, sexo ou etnia. O organismo humano o utiliza como uma resposta adaptativa frente a situações diversas, as quais requeiram alguma adaptação do organismo para que possa enfrentar tal situação. Dependendo do estímulo estressor, pode ser gerado no indivíduo desgastes físico, mental ou emocional, no entanto, o estresse não representa necessariamente algo ruim ou patológico; este é um mecanismo de adaptação vital para a sobrevivência da espécie humana. Porém, o número de pessoas que são afetadas de forma negativa pelo estresse tem crescido imensamente nas últimas décadas. Pesquisas destacam que nos Estados Unidos cerca de 60% a 90% dos atendimentos médicos estão relacionados de alguma maneira com o estresse, enquanto que no Brasil aproximadamente 80% da população sofre de estresse, sendo que desses, 30% encontram-se na fase mais crítica, a chamada fase de exaustão. Tendo em vista que a principal forma de identificação de estresse ainda é realizada através do uso de questionário de autorrelato. O presente estudo apresenta como contribuição uma metodologia de análise do nível de estresse baseada na variação da condutância galvânica da pele e de sinais de eletroencefalografia, sendo utilizados como parâmetros a assimetria do ritmo alfa, assim como a razão entre os ritmos beta e alfa no córtex frontal e pré-frontal. Para a gravação dos sinais de EEG foi utilizado um dispositivo portátil, com eletrodos especificamente situados nas posições aF3, F3, F4 e aF4, de acordo com o Sistema Internacional 10/20 de posicionamento de eletrodos. Os participantes deste estudo são Bombeiros Militares da 1ª Cia de Vitória-ES. Foram utilizadas três classes de estímulos emocionais positivos, calmos e negativos, através da utilização de imagens pertencentes ao banco de dados IAPS (International Affective Picture System). Os resultados de acurácia obtidos através de um classificador SVM (Support Vector Machine) chegam a 88,24% para classe de estímulos positivos, 84,09% para classe calma e de 92,86% para os estímulos negativos. Deste modo, esta pesquisa apresenta uma combinação de parâmetros que podem ser aferidos com equipamentos de baixo custo, e fornecem condições de diferenciar estímulos estressantes, podendo assim, ser utilizada para auxiliar no treinamento de profissionais da área de urgência e emergência.
Resumo:
Behaviour comparisons of Aedes scapularis and Ae. serratus are presented. Results were obtained by sampling Aedes adult mosquitoes at several places in the rural anthropic environment in the Ribeira Valley region of S. Paulo State, Brazil. Aedes dominance was shared by those two species, but Ae. scapularis Sshowed a clear tendency to frequent the modified environment, while Ae. serratus was to be found in the more preserved ones, here represented by the vestigial patchy forests. Regarding the open cultivated land and the dwelling environments, Ae. scapularis preponderates. Considering the regional developmental phases, this mosquito showed a remarkable increase in the modified environment differently from Ae. serratus that underwent a considerable decrease in migrating from the forest to the anthropic environment. As a consequence of these results it is reasonable to conclude that Ae. scapularis may be considered as an epidemiologically efficient vector and that it quite probably played this role in the Rocio encephalitis and other arbovirus epidemics.
Resumo:
Mestrado em Engenharia Informática
Resumo:
Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Arquiteturas, Sistemas e Redes
Resumo:
The eco-epidemiology of T. cruzi infection was investigated in the Eastern border of the Panama Canal in Central Panama. Between 1999 and 2000, 1110 triatomines were collected: 1050 triatomines (94.6%) from palm trees, 27 (2.4%) from periurban habitats and 33 (3.0%) inside houses. All specimens were identified as R. pallescens. There was no evidence of vector domiciliation. Salivary glands from 380 R. pallescens revealed a trypanosome natural infection rate of 7.6%, while rectal ampoule content from 373 triatomines was 45%. Isoenzyme profiles on isolated trypanosomes demonstrated that 85.4% (n = 88) were T. cruzi and 14.6% (n = 15) were T. rangeli. Blood meal analysis from 829 R. pallescens demonstrated a zoophilic vector behavior, with opossums as the preferential blood source. Seroprevalence in human samples from both study sites was less than 2%. Our results demonstrate that T. cruzi survives in the area in balanced association with R. pallescens, and with several different species of mammals in their natural niches. However, the area is an imminent risk of infection for its population, consequently it is important to implement a community educational program regarding disease knowledge and control measures.