933 resultados para Water in literature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transfer coefficient of radon from water to air was investigated in schools. Kitchens, bathrooms and locker rooms were studied for seven schools in Maine. Simulations were done in water-use rooms where radon in air detectors were in place. Quantities measured were radon in water (270-24500 F) and air (0-80 q), volume of water used, emissivities (0.01-0.99) and ventilation rates (0.012-0.066A). Variation throughout the room of the radon concentration was found. Values calculated for the transfer coefficient for kitchens and baths were ranged from 9.6 x to 2.0 x The transfer coefficient was calculated using these parameters and was also measured using concentrations of radon in water and air. This provides a means by which radon in air can be estimated using the transfer coefficient and the concentration in the water in other schools and it can be used to estimate the dose caused by radon released from water use. This project was partially funded by the United States Environmental Protection Agency (grant #X828l2 101-0) and by the State of Maine (grant #10A500178). These are the first measurements of this type to be done in schools in the United States.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geographic distribution of average annual age-adjusted mortality rates (1964-1976) for four types of cancer (all cancer sites combined, gastrointestinal, urinary, and lung cancer) were compared by sources of drinking water for 254 Texas counties and county rural areas and 301 Texas cities. Exposure variables considered were surface versus ground water, public water supplies versus individuals wells, and trihalomethane levels in municipal water supplies. Each general source of "surface" and "ground" water was further divided by aggregating ground water using areas by aquifers and surface water using study areas by river basins. Potential confounding variables taken into account included median education, employment in cancer risk industries, population mobility, ethnicity, and urbanicity. A pattern of higher and lower cancer mortality rates was found for populations using some aquifers and river basins. Further study is required to determine whether the differences in cancer mortality rates that were observed are related to drinking water content or are coincidental with differences in personal characteristics which could not be taken into account in this ecologic study design. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Past and recent evidence shows that radionuclides in drinking water may be a public health concern. Developmental thresholds for birth defects with respect to chronic low level domestic radiation exposures, such as through drinking water, have not been definitely recognized, and there is a strong need to address this deficiency in information. In this study we examined the geographic distribution of orofacial cleft birth defects in and around uranium mining district Counties in South Texas (Atascosa, Bee, Brooks, Calhoun, Duval, Goliad, Hidalgo, Jim Hogg, Jim Wells, Karnes, Kleberg, Live Oak, McMullen, Nueces, San Patricio, Refugio, Starr, Victoria, Webb, and Zavala), from 1999 to 2007. The probable association of cleft birth defect rates by ZIP codes classified according to uranium and radium concentrations in drinking water supplies was evaluated. Similar associations between orofacial cleft birth defects and radium/radon in drinking water were reported earlier by Cech and co-investigators in another of the Gulf Coast region (Harris County, Texas).50, 55 Since substantial uranium mining activity existed and still exists in South Texas, contamination of drinking water sources with radiation and its relation to birth defects is a ground for concern. ^ Methods Residential addresses of orofacial cleft birth defect cases, as well as live births within the twenty Counties during 1999-2007 were geocoded and mapped. Prevalence rates were calculated by ZIP codes and were mapped accordingly. Locations of drinking water supplies were also geocoded and mapped. ZIP codes were stratified as having high combined uranium (≥30μg/L) vs. low combined uranium (<30μg/L). Likewise, ZIP codes having the uranium isotope, Ra-226 in drinking water, were also stratified as having elevated radium (≥3 pCi/L) vs. low radium (<3 pCi/L). A linear regression was performed using STATA® generalized linear model (GLM) program to evaluate the probable association between cleft birth defect rates by ZIP codes and concentration of uranium and radium via domestic water supply. These rates were further adjusted for potentially confounding variables such as maternal age, education, occupation, and ethnicity. ^ Results This study showed higher rates of cleft births in ZIP codes classified as having high combined uranium versus ZIP codes having low combined uranium. The model was further improved by adding radium stratified as explained above. Adjustment for maternal age and ethnicity did not substantially affect the statistical significance of uranium or radium concentrations in household water supplies. ^ Conclusion Although this study lacks individual exposure levels, the findings suggest a significant association between elevated uranium and radium concentrations in tap water and high orofacial birth defect rates by ZIP codes. Future case-control studies that can measure individual exposure levels and adjust for contending risk factors could result in a better understanding of the exposure-disease association.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Br/Cl, Li/Cl and B/Cl ratios and boron isotope compositions of hypersaline pore fluids from DSDP Sites 372 and 374 were measured in an attempt to evaluate the origin of the brines. In Site 374 the relationships between the Cl concentrations (up to 5000 mM) and Br/Cl (~0.012), Na/Cl (as low as 0.1), B/Cl (0.0025), and d11B values (43-55?) of the deep pore water between 380 and 405 mbsf, located within the Messinian sediments, reflect remnants of ~65-fold evaporated sea water. The original evaporated sea water was modified by: (1) dilution with overlying or less saline water by about 30%; and (2) slight dissolution of NaCl evaporites. The variations in d11B show a continuous increase in d11B values with depth in Site 374, up to 66.7? at a depth of 300 mbsf (Upper Pliocene marl sediments). The conspicuous 11B enrichment trend is consistent with elemental boron depletion, which was calculated from the expected boron concentrations of evaporated sea water with corresponding Br/Cl and Na/Cl ratios. Li/Cl variations also show a depletion of Li relative to evaporated sea water. The apparent depletions of B and Li, as well as the 11B enrichment, reflect uptake of these elements by clay minerals at low water/sediment ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fog deposition, precipitation, throughfall and stemflow were measured in a windward tropical montane cloud forest near Monteverde, Costa Rica, for a 65-day period during the dry season of 2003. Net fog deposition was measured directly using the eddy covariance (EC) method and it amounted to 1.2 ± 0.1 mm/day (mean ± standard error). Fog water deposition was 5-9% of incident rainfall for the entire period, which is at the low end of previously reported values. Stable isotope concentrations (d18O and d2H) were determined in a large number of samples of each water component. Mass balance-based estimates of fog deposition were 1.0 ± 0.3 and 5.0 ± 2.7 mm/day (mean ± SE) when d18O and d2H were used as tracer, respectively. Comparisons between direct fog deposition measurements and the results of the mass balance model using d18O as a tracer indicated that the latter might be a good tool to estimate fog deposition in the absence of direct measurement under many (but not all) conditions. At 506 mm, measured water inputs over the 65 days (fog plus rain) fell short by 46 mm compared to the canopy output of 552 mm (throughfall, stemflow and interception evaporation). This discrepancy is attributed to the underestimation of rainfall during conditions of high wind.