924 resultados para Water Use Efficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Winter cereal cropping is marginal in south-west Queensland because of low and variable rainfall and declining soil fertility. Increasing the soil water storage and the efficiency of water and nitrogen (N) use is essential for sustainable cereal production. The effect of zero tillage and N fertiliser application on these factors was evaluated in wheat and barley from 1996 to 2001 on a grey Vertosol. Annual rainfall was above average in 1996, 1997, 1998 and 1999 and below average in 2000 and 2001. Due to drought, no crop was grown in the 2000 winter cropping season. Zero tillage improved fallow soil water storage by a mean value of 20 mm over 4 years, compared with conventional tillage. However, mean grain yield and gross margin of wheat were similar under conventional and zero tillage. Wheat grain yield and/or grain protein increased with N fertiliser application in all years, resulting in an increase in mean gross margin over 5 years from $86/ha, with no N fertiliser applied, to $250/ha, with N applied to target ≥13% grain protein. A similar increase in gross margin occurred in barley where N fertiliser was applied to target malting grade. The highest N fertiliser application rate in wheat resulted in a residual benefit to soil N supply for the following crop. This study has shown that profitable responses to N fertiliser addition in wheat and barley can be obtained on long-term cultivated Vertosols in south-west Queensland when soil water reserves at sowing are at least 60% of plant available water capacity, or rainfall during the growing season is above average. An integrative benchmark for improved N fertiliser management appears to be the gross margin/water use of ~$1/ha.mm. Greater fallow soil water storage or crop water use efficiency under zero tillage has the potential to improve winter cereal production in drier growing seasons than experienced during the period of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing is a major land use in Australia's rangelands. The 'safe' livestock carrying capacity (LCC) required to maintain resource condition is strongly dependent on climate. We reviewed: the approaches for quantifying LCC; current trends in climate and their effect on components of the grazing system; implications of the 'best estimates' of climate change projections for LCC; the agreement and disagreement between the current trends and projections; and the adequacy of current models of forage production in simulating the impact of climate change. We report the results of a sensitivity study of climate change impacts on forage production across the rangelands, and we discuss the more general issues facing grazing enterprises associated with climate change, such as 'known uncertainties' and adaptation responses (e.g. use of climate risk assessment). We found that the method of quantifying LCC from a combination of estimates (simulations) of long-term (>30 years) forage production and successful grazier experience has been well tested across northern Australian rangelands with different climatic regions. This methodology provides a sound base for the assessment of climate change impacts, even though there are many identified gaps in knowledge. The evaluation of current trends indicated substantial differences in the trends of annual rainfall (and simulated forage production) across Australian rangelands with general increases in most of western Australian rangelands ( including northern regions of the Northern Territory) and decreases in eastern Australian rangelands and south-western Western Australia. Some of the projected changes in rainfall and temperature appear small compared with year-to-year variability. Nevertheless, the impacts on rangeland production systems are expected to be important in terms of required managerial and enterprise adaptations. Some important aspects of climate systems science remain unresolved, and we suggest that a risk-averse approach to rangeland management, based on the 'best estimate' projections, in combination with appropriate responses to short-term (1-5 years) climate variability, would reduce the risk of resource degradation. Climate change projections - including changes in rainfall, temperature, carbon dioxide and other climatic variables - if realised, are likely to affect forage and animal production, and ecosystem functioning. The major known uncertainties in quantifying climate change impacts are: (i) carbon dioxide effects on forage production, quality, nutrient cycling and competition between life forms (e.g. grass, shrubs and trees); and (ii) the future role of woody plants including effects of. re, climatic extremes and management for carbon storage. In a simple example of simulating climate change impacts on forage production, we found that increased temperature (3 degrees C) was likely to result in a decrease in forage production for most rangeland locations (e. g. -21% calculated as an unweighted average across 90 locations). The increase in temperature exacerbated or reduced the effects of a 10% decrease/increase in rainfall respectively (-33% or -9%). Estimates of the beneficial effects of increased CO2 (from 350 to 650 ppm) on forage production and water use efficiency indicated enhanced forage production (+26%). The increase was approximately equivalent to the decline in forage production associated with a 3 degrees C temperature increase. The large magnitude of these opposing effects emphasised the importance of the uncertainties in quantifying the impacts of these components of climate change. We anticipate decreases in LCC given that the 'best estimate' of climate change across the rangelands is for a decline (or little change) in rainfall and an increase in temperature. As a consequence, we suggest that public policy have regard for: the implications for livestock enterprises, regional communities, potential resource damage, animal welfare and human distress. However, the capability to quantify these warnings is yet to be developed and this important task remains as a challenge for rangeland and climate systems science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil water repellency occurs widely in horticultural and agricultural soils when very dry. The gradual accumulation and breakdown of surface organic matter over time produces wax-like organic acids, which coat soil particles preventing uniform entry of water into the soil. Water repellency is usually managed by regular surfactant applications. Surfactants, literally, are surface active agents (SURFace ACTive AgeNTS). Their mode of action is to reduce the surface tension of water, allowing it to penetrate and wet the soil more easily and completely. This practice improves water use efficiency (by requiring less water to wet the soil and by capturing rainfall and irrigation more effectively and rapidly). It also reduces nutrient losses through run-off erosion or leaching. These nutrients have the potential to pollute the surrounding environment and water courses. This project investigated potential improvements to standard practices (product combination and scheduling) for surfactant use to overcome localised dry spots on water repellent soils and thus improve turf quality and water use efficiency. Weather conditions for the duration of the trial prevented the identification of improved practices in terms of combination and scheduling. However, the findings support previous research that the use of soil surfactants decreased the time for water to infiltrate dry soil samples taken from a previously severely hydrophobic site. Data will be continually collected from this trial site on a private contractual basis, with the hope that improvements to standard practices will be observed during the drier winter months when moisture availability is a limiting factor for turfgrass growth and quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models are abstractions of reality that have predetermined limits (often not consciously thought through) on what problem domains the models can be used to explore. These limits are determined by the range of observed data used to construct and validate the model. However, it is important to remember that operating the model beyond these limits, one of the reasons for building the model in the first place, potentially brings unwanted behaviour and thus reduces the usefulness of the model. Our experience with the Agricultural Production Systems Simulator (APSIM), a farming systems model, has led us to adapt techniques from the disciplines of modelling and software development to create a model development process. This process is simple, easy to follow, and brings a much higher level of stability to the development effort, which then delivers a much more useful model. A major part of the process relies on having a range of detailed model tests (unit, simulation, sensibility, validation) that exercise a model at various levels (sub-model, model and simulation). To underline the usefulness of testing, we examine several case studies where simulated output can be compared with simple relationships. For example, output is compared with crop water use efficiency relationships gleaned from the literature to check that the model reproduces the expected function. Similarly, another case study attempts to reproduce generalised hydrological relationships found in the literature. This paper then describes a simple model development process (using version control, automated testing and differencing tools), that will enhance the reliability and usefulness of a model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroponic production systems offer optimal conditions for rapid growth, protection from adverse weather and greater water use efficiency. The most important limitation for hydroponic production production is water borne disease. Water borne disease can rapidly spread causing up to 100% crop failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acacia senegal, the gum arabic producing tree, is the most important component in traditional dryland agroforestry systems in the Blue Nile region, Sudan. The aim of the present study was to provide new knowledge on the potential use of A. senegal in dryland agroforestry systems on clay soils, as well as information on tree/crop interaction, and on silvicultural and management tools, with consideration on system productivity, nutrient cycling and sustainability. Moreover, the aim was also to clarify the intra-specific variation in the performance of A. senegal and, specifically, the adaptation of trees of different origin to the clay soils of the Blue Nile region. In agroforestry systems established at the beginning of the study, tree and crop growth, water use, gum and crop yields, nutrient cycling and system performance were investigated for a period of four years (1999 to 2002). Trees were grown at 5 x 5 m and 10 x 10 m spacing alone or in mixture with sorghum or sesame; crops were also grown in sole culture. The symbiotic biological N2 fixation by A. senegal was estimated using the 15N natural abundance (δ15N) procedure in eight provenances collected from different environments and soil types of the gum arabic belt and grown in clay soil in the Blue Nile region. Balanites aegyptiaca (a non-legume) was used as a non-N-fixing reference tree species, so as to allow 15N-based estimates of the proportion of the nitrogen in trees derived from the atmosphere. In the planted acacia trees, measurements were made on shoot growth, water-use efficiency (as assessed by the δ13C method) and (starting from the third year) gum production. Carbon isotope ratios were obtained from the leaves and branch wood samples. The agroforestry system design caused no statistically significant variation in water use, but the variation was highly significant between years, and the highest water use occurred in the years with high rainfall. No statistically significant differences were found in sorghum or sesame yields when intercropping and sole crop systems were compared (yield averages were 1.54 and 1.54 ha-1 for sorghum and 0.36 and 0.42 t ha-1 for sesame in the intercropped and mono-crop plots, respectively). Thus, at an early stage of agroforestry system management, A. senegal had no detrimental effect on crop yield, but the pattern of resource capture by trees and crops may change as the system matures. Intercropping resulted in taller trees and larger basal and crown diameters as compared to the development of sole trees. It also resulted in a higher land equivalent ratio. When gum yields were analysed it was found that a significant positive relationship existed between the second gum picking and the total gum yield. The second gum picking seems to be a decisive factor in gum production and could be used as an indicator for the total gum yield in a particular year. In trees, the concentrations of N and P were higher in leaves and roots, whereas the levels of K were higher in stems, branches and roots. Soil organic matter, N, P and K contents were highest in the upper soil stratum. There was some indication that the P content slightly increased in the topsoil as the agroforestry plantations aged. At a stocking of 400 trees ha-1 (5 x 5 m spacing), A. senegal accumulated in the biomass a total of 18, 1.21, 7.8 and 972 kg ha-1of N, P, K and OC, respectively. Trees contributed ca. 217 and 1500 kg ha-1 of K and OC, respectively, to the top 25-cm of soil over the first four years of intercropping. Acacia provenances of clay plain origin showed considerable variation in seed weight. They also had the lowest average seed weight as compared to the sandy soil (western) provenances. At the experimental site in the clay soil region, the clay provenances were distinctly superior to the sand provenances in all traits studied but especially in basal diameter and crown width, thus reflecting their adaptation to the environment. Values of δ13C, indicating water use efficiency, were higher in the sand soil group as compared to the clay one, both in leaves and in branch wood. This suggests that the sand provenances (with an average value of -28.07 ) displayed conservative water use and high drought tolerance. Of the clay provenances, the local one (Bout) displayed a highly negative (-29.31 ) value, which indicates less conservative water use that resulted in high productivity at this particular clay-soil site. Water use thus appeared to correspond to the environmental conditions prevailing at the original locations for these provenances. Results suggest that A. senegal provenances from the clay part of the gum belt are adapted for a faster growth rate and higher biomass and gum productivity as compared to provenances from sand regions. A strong negative relationship was found between the per-tree gum yield and water use efficiency, as indicated by δ13C. The differences in water use and gum production were greater among provenance groups than within them, suggesting that selection among rather than within provenances would result in distinct genetic gain in gum yield. The relative δ15N values ( ) were higher in B. aegyptiaca than in the N2-fixing acacia provenances. The amount of Ndfa increased significantly with age in all provenances, indicating that A. senegal is a potentially efficient nitrogen fixer and has an important role in t agroforestry development. The total above-ground contribution of fixed N to foliage growth in 4-year-old A. senegal trees was highest in the Rahad sand-soil provenance (46.7 kg N ha-1) and lowest in the Mazmoom clay-soil provenance (28.7 kg N ha-1). This study represents the first use of the δ15N method for estimating the N input by A. senegal in the gum belt of Sudan. Key words: Acacia senegal, agroforestry, clay plain, δ13C, δ15N, gum arabic, nutrient cycling, Ndfa, Sorghum bicolor, Sesamum indicum

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose This study investigated how nitrogen (N) nutrition and key physiological processes varied under changed water and nitrogen competition resulting from different weed control and fertilisation treatments in a 2-year-old F1 hybrid (Pinus elliottii Engelm var. elliottii × P. caribaea var. hondurensis Barr. ex Golf.) plantation on a grey podzolic soil type, in Southeast Queensland. Materials and methods The study integrated a range of measures including growth variables (diameter at ground level (DGL), diameter at breast height (DBH) and height (H)), foliar variables (including foliar N concentration, foliar δ13C and δ15N) and physiological variables (including photosynthesis (An), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (WUEi) (A/gs) and xylem pressure potential (ΨXPP)) to better understand the mechanisms influencing growth under different weed control and fertilisation treatments. Five levels of weed control were applied: standard (routine), luxury, intermediate, mechanical and nil weed control, all with routine fertilisation plus an additional treatment, routine weed control and luxury fertilisation. Relative weed cover was assessed at 0.8, 1.1 and 1.6 years after plantation establishment to monitor the effectiveness of weed control treatments. Soil investigation included soil ammonium (NH4 +-N), nitrate (NO3 −-N), potentially mineralizable N (PMN), gravimetric soil moisture content (MC), hot water extractable organic carbon (HWETC), hot water extractable total N (HWETN), total C, total N, stable C isotope composition (δ13C), stable N isotope composition (δ15N), total P and extractable K. Results and discussion There were significant relationships between foliar N concentrations and relative weed cover and between tree growth and foliar N concentration or foliar δ15N, but initial site preparation practices also increased soil N transformations in the planting rows reducing the observable effects of weed control on foliar δ15N. A positive relationship between foliar N concentration and foliar δ13C or photosynthesis indicated that increased N availability to trees positively influenced non-stomatal limitations to photosynthesis. However, trees with increased foliar N concentrations and photosynthesis were negatively related to xylem pressure potential in the afternoons which enhanced stomatal limitations to photosynthesis and WUEi. Conclusions Luxury and intermediate weed control and luxury fertilisation positively influenced growth at early establishment by reducing the competition for water and N resources. This influenced fundamental key physiological processes such as the relationships between foliar N concentration, A n, E, gs and ΨXPP. Results also confirmed that time from cultivation is an important factor influencing the effectiveness of using foliar δ15N as an indicator of soil N transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol−1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol−1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust-infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high proportion of the Australian and New Zealand dairy industry is based on a relatively simple, low input and low cost pasture feedbase. These factors enable this type of production system to remain internationally competitive. However, a key limitation of pasture-based dairy systems is periodic imbalances between herd intake requirements and pasture DM production, caused by strong seasonality and high inter-annual variation in feed supply. This disparity can be moderated to a certain degree through the strategic management of the herd through altering calving dates and stocking rates, and the feedbase by conserving excess forage and irrigating to flatten seasonal forage availability. Australasian dairy systems are experiencing emerging market and environmental challenges, which includes increased competition for land and water resources, decreasing terms of trade, a changing and variable climate, an increasing environmental focus that requires improved nutrient and water-use efficiency and lower greenhouse gas emissions. The integration of complementary forages has long been viewed as a means to manipulate the home-grown feed supply, to improve the nutritive value and DM intake of the diet, and to increase the efficiency of inputs utilised. Only recently has integrating complementary forages at the whole-farm system level received the significant attention and investment required to examine their potential benefit. Recent whole-of-farm research undertaken in both Australia and New Zealand has highlighted the importance of understanding the challenges of the current feedbase and the level of complementarity between forage types required to improve profit, manage risk and/or alleviate/mitigate against adverse outcomes. This paper reviews the most recent systems-level research into complementary forages, discusses approaches to modelling their integration at the whole-farm level and highlights the potential of complementary forages to address the major challenges currently facing pasture-based dairy systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal–stomatal traits, leaf internal anatomy, and physiological performance.• Methods: Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Key results: Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in this thesis focussed on the improvement of agricultural crops in increasing water use efficiency that impacts global crop productivity. The study identified key genetic regulatory mechanisms that the resurrection plant Tripogon loliiformis utilises to tolerate desiccation. Due to the conserved nature of the pathways involved, this information can be transferred for the enhancement of drought tolerance and water use efficiency in agricultural crops. Specifically this study used high throughput sequencing, microscopy and plant transformation to further the understanding of post-transcriptional regulatory mechanisms. It was shown that T. loliiformis uses microRNAs to regulate pro-survival autophagy pathways to tolerate desiccation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end-use efficiency, improved land carbon-stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small-scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100EJ: high agreement; 100-300EJ: medium agreement; above 300EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245EJyr(-1) to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large-scale deployment (>200EJ), together with BECCS, could help to keep global warming below 2 degrees degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea level rise (SLR) is a primary factor responsible for inundation of low-lying coastal regions across the world, which in turn governs the agricultural productivity. In this study, rice (Oryza sativa L.) cultivated seasonally in the Kuttanad Wetland, a SLR prone region on the southwest coast of India, were analysed for oxygen, hydrogen and carbon isotopic ratios (delta O-18, delta H-2 and delta C-13) to distinguish the seasonal environmental conditions prevalent during rice cultivation. The region receives high rainfall during the wet season which promotes large supply of fresh water to the local water bodies via the rivers. In contrast, during the dry season reduced river discharge favours sea water incursion which adversely affects the rice cultivation. The water for rice cultivation is derived from regional water bodies that are characterised by seasonal salinity variation which co-varies with the delta O-18 and delta H-2 values. Rice cultivated during the wet and the dry season bears the isotopic imprints of this water. We explored the utility of a mechanistic model to quantify the contribution of two prominent factors, namely relative humidity and source water composition in governing the seasonal variation in oxygen isotopic composition of rice grain OM. delta C-13 values of rice grain OM were used to deduce the stress level by estimating the intrinsic water use efficiency (WUEi) of the crop during the two seasons. 1.3 times higher WUE, was exhibited by the same genotype during the dry season. The approach can be extended to other low lying coastal agro-ecosystems to infer the growth conditions of cultivated crops and can further be utilised for retrieving paleo-environmental information from well preserved archaeological plant remains. (c) 2015 Elsevier Ltd. All rights reserved.