946 resultados para Vulnerability
Resumo:
The carbonate outcrops of the anticline of Monte Conero (Italy) were studied in order to characterize the geometry of the fractures and to establish their influence on the petrophysical properties (hydraulic conductivity) and on the vulnerability to pollution. The outcrops form an analog for a fractured aquifer and belong to the Maiolica Fm. and the Scaglia Rossa Fm. The geometrical properties of fractures such as orientation, length, spacing and aperture were collected and statistically analyzed. Five types of mechanical fractures were observed: veins, joints, stylolites, breccias and faults. The types of fractures are arranged in different sets and geometric assemblages which form fracture networks. In addition, the fractures were analyzed at the microscale using thin sections. The fracture age-relationships resulted similar to those observed at the outcrop scale, indicating that at least three geological episodes have occurred in Monte Conero. A conceptual model for fault development was based on the observations of veins and stylolites. The fracture sets were modelled by the code FracSim3D to generate fracture network models. The permeability of a breccia zone was estimated at microscale by and point counting and binary image methods, whereas at the outcrop scale with Oda’s method. Microstructure analysis revealed that only faults and breccias are potential pathways for fluid flow since all veins observed are filled with calcite. According this, three scenarios were designed to asses the vulnerability to pollution of the analogue aquifer: the first scenario considers the Monte Conero without fractures, second scenario with all observed systematic fractures and the third scenario with open veins, joints and faults/breccias. The fractures influence the carbonate aquifer by increasing its porosity and hydraulic conductivity. The vulnerability to pollution depends also on the presence of karst zones, detric zones and the material of the vadose zone.
Resumo:
The thesis moves from the need of understanding how a historical building would behave in case of earthquake and this purpose is strongly linked to the fact that the majority of Italian structures are old ones placed in seismic sites. Primarily an architectural and chronological research is provided in order to figure out how the building has developed in time; then, after the reconstruction of the skeleton of the analyzed element (“Villa i Bossi” in Gragnone, AR), a virtual model is created such that the main walls and sections are tested according to the magnitude of expected seismic events within the reference area. This approach is basically aimed at verifying the structure’s reliability as composed by single units; the latter are treated individually in order to find out all the main critical points where rehabilitation might be needed. Finally the most harmful sections are studied in detail and proper strengthening is advised according to the current know-how.
Resumo:
In this dissertation some novel indices for vulnerability and robustness assessment of power grids are presented. Such indices are mainly defined from the structure of transmission power grids, and with the aim of Blackout (BO) prevention and mitigation. Numerical experiments showing how they could be used alone or in coordination with pre-existing ones to reduce the effects of BOs are discussed. These indices are introduced inside 3 different sujects: The first subject is for taking a look into economical aspects of grids’ operation and their effects in BO propagation. Basically, simulations support that: the determination to operate the grid in the most profitable way could produce an increase in the size or frequency of BOs. Conversely, some uneconomical ways of supplying energy are shown to be less affected by BO phenomena. In the second subject new topological indices are devised to address the question of "which are the best buses to place distributed generation?". The combined use of two indices, is shown as a promising alternative for extracting grid’s significant features regarding robustness against BOs and distributed generation. For this purpose, a new index based on outage shift factors is used along with a previously defined electric centrality index. The third subject is on Static Robustness Analysis of electric networks, from a purely structural point of view. A pair of existing topological indices, (namely degree index and clustering coefficient), are combined to show how degradation of the network structure can be accelerated. Blackout simulations were carried out using the DC Power Flow Method and models of transmission networks from the USA and Europe.
Resumo:
The Swiss Alps will experience pronounced effects of climate change due to the combination of their latitudinal positioning, altitude and unique ecosystems, placing socio-economic stresses on alpine communities, many of which rely on seasonal tourism. Studies into tourism adaptation within the Swiss Alps have so far focused on the technical adaptation options of alpine stakeholders, rather than perceptions of adaptation to climate change at the operational and community level. This article investigates attitudes to adaptation in two alpine regions within Switzerland's well-established decentralized political framework, through semi-structured qualitative interviews. Stakeholders focused almost entirely on maintaining the status quo of winter tourism, through technical or marketing measures, with mixed attitudes towards climatic impacts. A matrix based on the relative internal strengths and weaknesses, external opportunities and threats of adaptation measures (a SWOT framework) was used to assess the measures and suggest how stakeholders could capitalize on the new opportunities thrown up by climate change to create a competitive advantage. A comprehensive and collaborative planning approach is vital to enable policy makers and stakeholders to maximize opportunities, minimize the adverse effects of climate change on the local economy, and develop inclusive adaptation measures that benefit the entire region in order to create more sustainable social, economic and environmental structures.
Resumo:
Tajikistan is judged to be highly vulnerable to risk, including food insecurity risks and climate change risks. By some vulnerability measures it is the most vulnerable among all 28 countries in the World Bank’s Europe and Central Asia Region – ECA (World Bank 2009). The rural population, with its relatively high incidence of poverty, is particularly vulnerable. The Pilot Program for Climate Resilience (PPCR) in Tajikistan (2011) provided an opportunity to conduct a farm-level survey with the objective of assessing various dimensions of rural population’s vulnerability to risk and their perception of constraints to farming operations and livelihoods. The survey should be accordingly referred to as the 2011 PPCR survey. The rural population in Tajikistan is highly agrarian, with about 50% of family income deriving from agriculture (see Figure 4.1; also LSMS 2007 – own calculations). Tajikistan’s agriculture basically consists of two groups of producers: small household plots – the successors of Soviet “private agriculture” – and dehkan (or “peasant”) farms – new family farming structures that began to be created under relevant legislation passed after 1992 (Lerman and Sedik, 2008). The household plots manage 20% of arable land and produce 65% of gross agricultural output (GAO). Dehkan farms manage 65% of arable land and produce close to 30% of GAO. The remaining 15% of arable land is held in agricultural enterprises – the rapidly shrinking sector of corporate farms that succeeded the Soviet kolkhozes and sovkhozes and today produces less than 10% of GAO (TajStat 2011) The survey conducted in May 2011 focused on dehkan farms, as budgetary constraints precluded the inclusion of household plots. A total of 142 dehkan farms were surveyed in face-to-face interviews. They were sampled from 17 districts across all four regions – Sughd, Khatlon, RRP, and GBAO. The districts were selected so as to represent different agro-climatic zones, different vulnerability zones (based on the World Bank (2011) vulnerability assessment), and different food-insecurity zones (based on WFP/IPC assessments). Within each district, 3-4 jamoats were chosen at random and 2-3 farms were selected in each jamoat from lists provided by jamoat administration so as to maximize the variability by farm characteristics. The sample design by region/district is presented in Table A, which also shows the agro-climatic zone and the food security phase for each district. The sample districts are superimposed on a map of food security phases based on IPC April 2011.
Resumo:
Tajikistan, with 93% of its surface area taken up by mountains and 65% of its labor force employed in agriculture, is judged to be highly vulnerable to risks, including climate change risks and food insecurity risks. The article examines a set of land use policies and practices that can be used to mitigate the vulnerability of Tajikistan’s large rural population, primarily by increasing family incomes. Empirical evidence from Tajikistan and other CIS countries suggests that families with more land and higher commercialization earn higher incomes and achieve higher well-being. The recommended policy measures that are likely to increase rural family incomes accordingly advocate expansion of smallholder farms, improvement of livestock productivity, increase of farm commercialization through improvement of farm services, and greater diversification of both income sources and the product mix. The analysis relies for supporting evidence on official statistics and recent farm surveys. Examples from local initiatives promoting sustainable land management practices and demonstrating the implementation of the proposed policy measures are presented.
Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol