992 resultados para Visual Cortex
Resumo:
Marked phenotypic variation has been reported in pyramidal cells in the primate cerebral cortex. These extent and systematic nature of these specializations suggest that they are important for specialized aspects of cortical processing. However, it remains unknown as to whether regional variations in the pyramidal cell phenotype are unique to primates or if they are widespread amongst mammalian species. In the present study we determined the receptive fields of neurons in striate and extrastriate visual cortex, and quantified pyramidal cell structure in these cortical regions, in the diurnal, large-brained, South American rodent Dasyprocta primnolopha. We found evidence for a first, second and third visual area (V1, V2 and V3, respectively) forming a lateral progression from the occipital pole to the temporal pole. Pyramidal cell structure became increasingly more complex through these areas, suggesting that regional specialization in pyramidal cell phenotype is not restricted to primates. However, cells in V1, V2 and V3 of the agouti were considerably more spinous than their counterparts in primates, suggesting different evolutionary and developmental influences may act on cortical microcircuitry in rodents and primates. (c) 2006 Elsevier B.V. All rights reserved.
Specializations of the granular prefrontal cortex of primates: Implications for cognitive processing
Resumo:
The biological underpinnings of human intelligence remain enigmatic. There remains the greatest confusion and controversy regarding mechanisms that enable humans to conceptualize, plan, and prioritize, and why they are set apart from other animals in their cognitive abilities. Here we demonstrate that the basic neuronal building block of the cerebral cortex, the pyramidal cell, is characterized by marked differences in structure among primate species. Moreover, comparison of the complexity of neuron structure with the size of the cortical area/region in which the cells are located revealed that trends in the granular prefrontal cortex (gPFC) were dramatically different to those in visual cortex. More specifically, pyramidal cells in the gPFC of humans had a disproportionately high number of spines. As neuron structure determines both its biophysical properties and connectivity, differences in the complexity in dendritic structure observed here endow neurons with different computational abilities. Furthermore, cortical circuits composed of neurons with distinguishable morphologies will likely be characterized by different functional capabilities. We propose that 1. circuitry in V1, V2, and gPFC within any given species differs in its functional capabilities and 2. there are dramatic differences in the functional capabilities of gPFC circuitry in different species, which are central to the different cognitive styles of primates. In particular, the highly branched, spinous neurons in the human gPFC may be a key component of human intelligence. (C) 2005 Wiley-Liss, Inc.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
Recent studies of areas V1 and MT in the visual cortex show that exposure to a stimulus can change the contrast sensitivity of cells and shift their peak sensitivity to a new orientation or movement direction. In MT, these shifts can correctly predict illusory changes - visual aftereffects - in movement direction, but in V1, they are more difficult to interpret.
Resumo:
Objective of this work was to explore the performance of a recently introduced source extraction method, FSS (Functional Source Separation), in recovering induced oscillatory change responses from extra-cephalic magnetoencephalographic (MEG) signals. Unlike algorithms used to solve the inverse problem, FSS does not make any assumption about the underlying biophysical source model; instead, it makes use of task-related features (functional constraints) to estimate source/s of interest. FSS was compared with blind source separation (BSS) approaches such as Principal and Independent Component Analysis, PCA and ICA, which are not subject to any explicit forward solution or functional constraint, but require source uncorrelatedness (PCA), or independence (ICA). A visual MEG experiment with signals recorded from six subjects viewing a set of static horizontal black/white square-wave grating patterns at different spatial frequencies was analyzed. The beamforming technique Synthetic Aperture Magnetometry (SAM) was applied to localize task-related sources; obtained spatial filters were used to automatically select BSS and FSS components in the spatial area of interest. Source spectral properties were investigated by using Morlet-wavelet time-frequency representations and significant task-induced changes were evaluated by means of a resampling technique; the resulting spectral behaviours in the gamma frequency band of interest (20-70 Hz), as well as the spatial frequency-dependent gamma reactivity, were quantified and compared among methods. Among the tested approaches, only FSS was able to estimate the expected sustained gamma activity enhancement in primary visual cortex, throughout the whole duration of the stimulus presentation for all subjects, and to obtain sources comparable to invasively recorded data.
Resumo:
A substantial amount of evidence has been collected to propose an exclusive role for the dorsal visual pathway in the control of guided visual search mechanisms, specifically in the preattentive direction of spatial selection [Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research and Reviews, 30, 66-76; Vidyasagar, T. R. (2001). From attentional gating in macaque primary visual cortex to dyslexia in humans. Progress in Brain Research, 134, 297-312]. Moreover, it has been suggested recently that the dorsal visual pathway is specifically involved in the spatial selection and sequencing required for orthographic processing in visual word recognition. In this experiment we manipulate the demands for spatial processing in a word recognition, lexical decision task by presenting target words in a normal spatial configuration, or where the constituent letters of each word are spatially shifted relative to each other. Accurate word recognition in the Shifted-words condition should demand higher spatial encoding requirements, thereby making greater demands on the dorsal visual stream. Magnetoencephalographic (MEG) neuroimaging revealed a high frequency (35-40 Hz) right posterior parietal activation consistent with dorsal stream involvement occurring between 100 and 300 ms post-stimulus onset, and then again at 200-400 ms. Moreover, this signal was stronger in the shifted word condition, compared to the normal word condition. This result provides neurophysiological evidence that the dorsal visual stream may play an important role in visual word recognition and reading. These results further provide a plausible link between early stage theories of reading, and the magnocellular-deficit theory of dyslexia, which characterises many types of reading difficulty. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The density of senile plaques (SP) and neurofibrillary tangles (NFT) was estimated at post-mortem in areas B17 and B18 of the visual cortex in 18 Alzheimer’s disease (AD) cases which varied in disease onset and duration. The density of SP in B17 and NFT in B17 and B18 declined significantly with age at death of the patient. The density of SP and NFT was greater in B18 than B17 but only in cases of earlier onset and shorter duration. The pathological differences between B17 and B18 could explain the visual evoked responses (VER) that have been reported in AD. However, the differences were small, and changes in the afferent pathways remain the most likely explanation for the VER in AD. © 1994 S. Karger AG, Basel.
Resumo:
The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a d.c. SQUID coupled to a second order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100 ms (P100M). At the time this component was present the response to half-field stimulation consisted of an outgoing magnetic field contralateral and extending to the midline. When the left half field was stimulated the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correctly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure. © 1992.
Resumo:
The topography of the visual evoked magnetic response (VEMR) to a pattern onset stimulus was investigated using 4 check sizes and 3 contrast levels. The pattern onset response consists of three early components within the first 200ms, CIm, CIIm and CIIIm. The CIIm is usually of high amplitude and is very consistent in latency within a subject. Half field (HF) stimuli produce their strongest response over the contralateral hemisphere; the RHF stimulus exhibiting a lower positivity (outgoing field) and an upper negativity (ingoing field), rotated towards the midline. LHF stimulation produced the opposite response, a lower negative and an upper positive. Larger check sizes produce a single area of ingoing and outgoing field while smaller checks produce on area of ingoing and outgoing field over each hemisphere. Latency did not appear to vary with change in contrast but amplitudes increased with increasing contrast. A more detailed topographic study incorporating source localisation procedures suggested a source for CIIm - 4cm below the scalp, close to the midline with current flowing towards the lateral surface. Similar depth and position estimates but with opposite polarity were obtained for the pattern shift P100m previously. Hence, the P100m and the CIIm may originate in similar areas of visual cortex but reveal different aspects of visual processing. © 1992 Human Sciences Press, Inc.
Resumo:
The visual evoked magnetic response (VEMR) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15-86 years. The latency of the major positive component (outgoing magnetic field) to the pattern reversal stimulus (P100M) increased with age, particularly after 55 years, while the amplitude of the P100M decreased more gradually over the lifespan. By contrast, the latency of the major positive component to the flash stimulus (P2M) increased more slowly with age after about 50 years, while its amplitude may have decreased in only a proportion of the elderly subjects. The changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis, degenerative changes in the retina or geniculostriate deficits. The P2M may be more susceptible to senile changes in the visual cortex. The data suggest that the contrast channels of visual information processing deteriorate more rapidly with age than the luminance channels.
Resumo:
The laminar distribution of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in areas B17 and B18 of the visual cortex in 18 cases of Alzheimer’s disease which varied in disease onset and duration. The objective was to test the hypothesis that SP and NFT could spread via either the feedforward or feedback short cortico-cortical projections. In area B17, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In B18, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. No significant correlations were observed in any cortical lamina between the density of SP and patient age. However, the density of NFT in laminae III, IV and VI in B18 was negatively correlated with patient age. In addition, in B18, the density of SP in lamina II and lamina V was negatively correlated with disease duration and disease onset respectively. Although these results suggest that SP and NFT might spread between B17 and B18 via the feedforward short cortico-cortical projections, it is also possible that the longer cortico-cortical and cortico-subcortical connections may be involved.
Resumo:
The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a dc-SQUID coupled to a second-order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100ms (P100M). At the same time this component was present the reponse to half-field stimulation consisted of an outgoing field contralateral and extending to the midline. When the left half-field was stimulates the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correltly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure.
Resumo:
Different visual stimuli may activate separate channels in the visual system and produce magnetic responses from the human bran which originate from distinct regions of the visual cortex. To test this hypothesis, we have investigated the distribution of visual evoked magnetic responses to three distinct visual stimuli over the occipital region of the scalp with a DC-SQUID second-order gradiometer in an ubshielded environment. Patterned stimuli were presented full field and to the right half field, while a flash stimulus was presented full field only, in five normal subjects. Magnetic responses were recorded from 20 to 42 positions over the occipital scalp. Topographic maps were prepared of the major positive component within the first 150ms to the three stimuli, i.e., the P100m (pattern shift), C11m (pattern onset) and P2m (flash). For the pattern shift stimulus the data suggested the source of the P100m was close to the midline with the current directed towards the medial surface. The data for the pattern onset C11m suggested a source at a similar depth but with the current directed away from the midline towards the lateral surface. The flash P2m appeared to originate closer to the surface of the occipital pole than both the patterned stimuli. Hence the pattern shift (which may represent movement), and the pattern onset C11m (representing contrast and contour) appear to originate in similar areas of brain but to represent different asepcts of cortical processing. By contrast, the flash P2m (representing luminance change) appears to originate in a distinct area of visual cortex closer to the occipital pole.
Resumo:
Distributed source analyses of half-field pattern onset visual evoked magnetic responses (VEMR) were carried out by the authors with a view to locating the source of the largest of the components, the CIIm. The analyses were performed using a series of realistic source spaces taking into account the anatomy of the visual cortex. Accuracy was enhanced by constraining the source distributions to lie within the visual cortex only. Further constraints on the source space yielded reliable, but possibly less meaningful, solutions.
Resumo:
The work presented in this thesis is divided into two distinct sections. In the first, the functional neuroimaging technique of Magnetoencephalography (MEG) is described and a new technique is introduced for accurate combination of MEG and MRI co-ordinate systems. In the second part of this thesis, MEG and the analysis technique of SAM are used to investigate responses of the visual system in the context of functional specialisation within the visual cortex. In chapter one, the sources of MEG signals are described, followed by a brief description of the necessary instrumentation for accurate MEG recordings. This chapter is concluded by introducing the forward and inverse problems of MEG, techniques to solve the inverse problem, and a comparison of MEG with other neuroimaging techniques. Chapter two provides an important contribution to the field of research with MEG. Firstly, it is described how MEG and MRI co-ordinate systems are combined for localisation and visualisation of activated brain regions. A previously used co-registration methods is then described, and a new technique is introduced. In a series of experiments, it is demonstrated that using fixed fiducial points provides a considerable improvement in the accuracy and reliability of co-registration. Chapter three introduces the visual system starting from the retina and ending with the higher visual rates. The functions of the magnocellular and the parvocellular pathways are described and it is shown how the parallel visual pathways remain segregated throughout the visual system. The structural and functional organisation of the visual cortex is then described. Chapter four presents strong evidence in favour of the link between conscious experience and synchronised brain activity. The spatiotemporal responses of the visual cortex are measured in response to specific gratings. It is shown that stimuli that induce visual discomfort and visual illusions share their physical properties with those that induce highly synchronised gamma frequency oscillations in the primary visual cortex. Finally chapter five is concerned with localization of colour in the visual cortex. In this first ever use of Synthetic Aperture Magnetometry to investigate colour processing in the visual cortex, it is shown that in response to isoluminant chromatic gratings, the highest magnitude of cortical activity arise from area V2.