905 resultados para Virtual Reality Structural Engineering Design
Resumo:
ABSTRACT: Purpose. Virtual reality devices, including virtual reality head-mounted displays, are becoming increasingly accessible to the general public as technological advances lead to reduced costs. However, there are numerous reports that adverse effects such as ocular discomfort and headache are associated with these devices. To investigate these adverse effects, questionnaires that have been specifically designed for other purposes such as investigating motion sickness have often been used. The primary purpose of this study was to develop a standard questionnaire for use in investigating symptoms that result from virtual reality viewing. In addition, symptom duration and whether priming subjects elevates symptom ratings were also investigated. Methods. A list of the most frequently reported symptoms following virtual reality viewing was determined from previously published studies and used as the basis for a pilot questionnaire. The pilot questionnaire, which consisted of 12 nonocular and 11 ocular symptoms, was administered to two groups of eight subjects. One group was primed by having them complete the questionnaire before immersion; the other group completed the questionnaire postviewing only. Postviewing testing was carried out immediately after viewing and then at 2-min intervals for a further 10 min. Results. Priming subjects did not elevate symptom ratings; therefore, the data were pooled and 16 symptoms were found to increase significantly. The majority of symptoms dissipated rapidly, within 6 min after viewing. Frequency of endorsement data showed that approximately half of the symptoms on the pilot questionnaire could be discarded because <20% of subjects experienced them. Conclusions. Symptom questionnaires to investigate virtual reality viewing can be administered before viewing, without biasing the findings, allowing calculation of the amount of change from pre- to postviewing. However, symptoms dissipate rapidly and assessment of symptoms needs to occur in the first 5 min postviewing. Thirteen symptom questions, eight nonocular and five ocular, were determined to be useful for a questionnaire specifically related to virtual reality viewing using a head-mounted display.
Resumo:
The results of research the intelligence multimodal man-machine interface and virtual reality means for assistive medical systems including computers and mechatronic systems (robots) are discussed. The gesture translation for disability peoples, the learning-by-showing technology and virtual operating room with 3D visualization are presented in this report and were announced at International exhibition "Intelligent and Adaptive Robots–2005".
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
The automotive industry combines a multitude of professionals to develop a modern car successfully. Within the design and development teams the collaboration and interface between Engineers and Designers is critical to ensure design intent is communicated and maintained throughout the development process. This study highlights recent industry practice with the emergence of Concept Engineers in design teams at Jaguar Land Rover Automotive group. The role of the Concept Engineer emphasises the importance of the Engineering and Design/Styling interface with the Concept engineer able to interact and understand the challenges and specific languages of each specialist area, hence improving efficiency and communication within the design team. Automotive education tends to approach design from two distinct directions, that of engineering design through BSc courses or a more styling design approach through BA and BDes routes. The educational challenge for both types of course is to develop engineers and stylist's who have greater understanding and experience of each other's specialist perspective of design and development. The study gives examples of two such courses in the UK who are developing programmes to help students widen their understanding of the engineering and design spectrum. Initial results suggest the practical approach has been well received by students and encouraged by industry as they seek graduates with specialist knowledge but also a wider appreciation of their role within the design process.
Resumo:
Background Motivated patients are more likely to adhere to treatment resulting in better outcomes. Virtual reality rehabilitation (VRR) is a treatment approach that includes video gaming to enhance motivation and functional training. Aims The study objectives were (1) to evaluate the feasibility of using a combination of pelvic floor muscles (PFM) exercises and VRR (PFM/VRR) to treat mixed urinary incontinence (MUI) in older women, (2) to evaluate the effectiveness of the PFM/VRR program on MUI symptoms, quality of life (QoL), and (3) gather quantitative information regarding patient satisfaction with this new combined training program. Methods Women 65 years and older with at least 2 weekly episodes of MUI were recruited. Participants were evaluated two times before and one time after a 12-week PFM/VRR training program. Feasibility was defined as the participants' rate of participation in and completion of both the PFM/VRR training program and the home exercise. Effectiveness was evaluated through a bladder diary, pad test, symptom and QoL questionnaire, and participant's satisfaction through a questionnaire. Results Twenty-four women (70.5 ± 3.6 years) participated. The participants complied with the study demands in terms of attendance at the weekly treatment sessions (91%), adherence to home exercise (92%) and completion of the three evaluations (96%). Post-intervention, the frequency and quantity of urine leakage decreased and patientreported symptoms and QoL improved significantly. Most participants were very satisfied with treatment (91%). Conclusion A combined PFM/VRR program is an acceptable, efficient, and satisfying functional treatment for older women with MUI and should be explore through further RCTs.
Resumo:
Background Motivated patients are more likely to adhere to treatment resulting in better outcomes. Virtual reality rehabilitation (VRR) is a treatment approach that includes video gaming to enhance motivation and functional training. Aims The study objectives were (1) to evaluate the feasibility of using a combination of pelvic floor muscles (PFM) exercises and VRR (PFM/VRR) to treat mixed urinary incontinence (MUI) in older women, (2) to evaluate the effectiveness of the PFM/VRR program on MUI symptoms, quality of life (QoL), and (3) gather quantitative information regarding patient satisfaction with this new combined training program. Methods Women 65 years and older with at least 2 weekly episodes of MUI were recruited. Participants were evaluated two times before and one time after a 12-week PFM/VRR training program. Feasibility was defined as the participants' rate of participation in and completion of both the PFM/VRR training program and the home exercise. Effectiveness was evaluated through a bladder diary, pad test, symptom and QoL questionnaire, and participant's satisfaction through a questionnaire. Results Twenty-four women (70.5 ± 3.6 years) participated. The participants complied with the study demands in terms of attendance at the weekly treatment sessions (91%), adherence to home exercise (92%) and completion of the three evaluations (96%). Post-intervention, the frequency and quantity of urine leakage decreased and patientreported symptoms and QoL improved significantly. Most participants were very satisfied with treatment (91%). Conclusion A combined PFM/VRR program is an acceptable, efficient, and satisfying functional treatment for older women with MUI and should be explore through further RCTs.
Resumo:
This study examines whether virtual reality (VR) is more superior to paper-based instructions in increasing the speed at which individuals learn a new assembly task. Specifically, the work seeks to quantify any learning benefits when individuals have been given the opportunity and compares the performance of two groups using virtual and hardcopy media types to pre-learn the task. A build experiment based on multiple builds of an aircraft panel showed that a group of people who pre-learned the assembly task using a VR environment completed their builds faster (average build time 29.5% lower). The VR group also made fewer references to instructional materials (average number of references 38% lower) and made fewer errors than a group using more traditional, hard copy instructions. These outcomes were more pronounced during build one with differences in build time and number of references showing limited statistical differences.
Resumo:
Objective: Caffeine has been shown to have effects on certain areas of cognition, but in executive functioning the research is limited and also inconsistent. One reason could be the need for a more sensitive measure to detect the effects of caffeine on executive function. This study used a new non-immersive virtual reality assessment of executive functions known as JEF© (the Jansari Assessment of Executive Function) alongside the ‘classic’ Stroop Colour- Word task to assess the effects of a normal dose of caffeinated coffee on executive function. Method: Using a double-blind, counterbalanced within participants procedure 43 participants were administered either a caffeinated or decaffeinated coffee and completed the ‘JEF©’ and Stroop tasks, as well as a subjective mood scale and blood pressure pre- and post condition on two separate occasions a week apart. JEF© yields measures for eight separate aspects of executive functions, in addition to a total average score. Results: Findings indicate that performance was significantly improved on the planning, creative thinking, event-, time- and action-based prospective memory, as well as total JEF© score following caffeinated coffee relative to the decaffeinated coffee. The caffeinated beverage significantly decreased reaction times on the Stroop task, but there was no effect on Stroop interference. Conclusion: The results provide further support for the effects of a caffeinated beverage on cognitive functioning. In particular, it has demonstrated the ability of JEF© to detect the effects of caffeine across a number of executive functioning constructs, which weren’t shown in the Stroop task, suggesting executive functioning improvements as a result of a ‘typical’ dose of caffeine may only be detected by the use of more real-world, ecologically valid tasks.
Resumo:
New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.
Resumo:
As a witness on the industrialization in Bologna, since its first generation was born in the late 1760, the Battiferro lock has been coping with the innovation that the city experienced throughout the centuries, until it has lost its functionality due to the technological development for which Bologna’s canals were gradually covered starting from the 1950s under Giuseppe Dozza ’s administration, as part of the reconstruction, reclamation and urban requalification that was carried out in the aftermath the World War II and which involved the whole city. The interest of the research carried out on this case study was primarily to reintroduce the landmark that is still intact, to what is considered to be the fourth generation of the industrial revolution, namely in the construction field, which is recognized as Construction 4.0, by means of the Historic (or Heritage) Information Modeling HBIM and Virtual Reality (VR) application. A scan-to-BIM approach was followed to create 3D as-built BIM model, as a first step towards the storytelling of the abandoned industrial built asset in VR environment, or as a seed for future applications such as Digital Twins (DT), heritage digital learning, sustainable impact studies, and/or interface with other interfaces such as GIS. Based on the HBIM product, examples of the primary BIM deliverables such as 2D layouts is given, then a workflow to VR is proposed and investigated the reliability of data and the type of users that may benefit of the VR experience, then the potential future development of the model is investigated, with comparison of a relatively similar experience in the UK.
Resumo:
In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others
Resumo:
Through this research is detailed the Brazilian seismic code focused on concrete projects design related to seismic engineering. At the beginning of the research is debated the fundaments of the seismic effects, the influence factors to the development of seismic effects and also relates the main data registration happened in Brazil. The second step is study the Brazilian seismic code explaining all the concepts related to it and does a compilation to the most important international seismic code. At this research is developed the designing of a building submitted to horizontal equivalent seismic forces and the modal process based on the answer spectrum based on the brazilin seismic code. It was also developed the design of a commercial building submitted to seismic loads based on the Brazilian code answer spectrum and compared to the same building submitted to wind loads.The research also focus on projects conception and detailing of seismic engineering Project design. At the study of seismic engineering it was concluded that seismic effects require special focus on concrete structures design, proving that is the essential consider the seismic effects
Resumo:
The SoftPlotter, a soft photogrammetric software and Silicon Graphics workstation, was used to evaluate the accuracy of soft photogrammetry and identify applications of this technology to highway engineering. A comparative study showed that SoftPlotter compares well with other software such as Socket and Integraph. The PC software TNTMips is inexpensive but needs further development to be comparable to SoftPlotter. The Campus Project showed that soft photogrammetry is accurate for traditional photogrammetric applications. It is also accurate for producing orthophoto and base maps for Geographic Information Systems (GISs). The Highway Project showed that soft photogrammetry is accurate for highway engineering and that the technical staff at the Iowa Department of Transportation (IA DOT) can be easily trained in this new technology. The research demonstrated that soft photogrammetry can be used with low-flight helicopter photography for large-scale mapping in highway engineering. The researchers recommend that research be conducted to test the use of digital cameras instead of the traditional aerial cameras in helicopter photography. Research that examines the use of soft photogrammetry with video logging imagery for inventory and GIS studies in highway maintenance is also recommended. Research is also warranted into the integration of soft photogrammetry with virtual reality, which can be used in three-dimensional designing and visualization of highways and subdivisions in real time. The IA DOT owns one analytical plotter and two analogue plotters. The analytical plotter is used for aerial triangulation, and the analogue plotters are used for plotting. However, neither is capable of producing orthophotos. Therefore, the researchers recommend that the IA DOT purchase soft photogrammetric workstations for orthophoto production, and if and when required, use it for aerial triangulation and plotting. In the future, the analogue plotters may become obsolete. At that time, the researchers recommend that the analogue plotters be phased out and replaced by soft photogrammetric workstations.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.
Resumo:
The technologies and methodologies of assembly design and evaluation in the early design stage are highly significant to product development. This paper looks at a promising technology to mix real components (e.g. physical prototypes, assembly tools, machines, etc.) with virtual components to create an Augmented Reality (AR) interface for assembly process evaluation. The goal of this paper is to clarify the methodologies and enabling technologies of how to establish an AR assembly simulation and evaluation environment. The architecture of an AR assembly system is proposed and the important functional modules including AR environment set-up, design for assembly (DFA) analysis and AR assembly sequence planning in an AR environment are discussed in detail.