992 resultados para Viking age Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lacustrine sediment core from Fiddaun, western Ireland was studied to reconstruct summer temperature changes during the Weichselian Lateglacial. This site is located close to the Atlantic Ocean; and so is potentially sensitive to climatic changes associated with changes in ocean circulation. The record, comprising the end of the Weichselian Pleniglacial to the early Holocene, was analysed for fossil chironomids, lithology, and oxygen and carbon isotopes in the sedimentary carbonates. These proxies clearly show rapid warming at the onset of the Lateglacial Interstadial, relatively high summer temperatures during the Interstadial, pronounced cooling during the Younger Dryas, and subsequent warming at the transition to the Holocene. Chironomid-inferred mean July air temperatures for the Interstadial are ~12.5–14.5 °C, ~7.5 °C for the Younger Dryas, and ~15.0 °C for the early Holocene. Furthermore, this research provides evidence for at least two cold events during the Interstadial. These more moderate temperature oscillations can be correlated to Greenland Interstadial events 1b and 1d, on the basis of the age-depth model for the Fiddaun sequence. Based on multiple proxies, the first cold oscillation (GI-1d) was the more severe of the two in Ireland.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment cores were recovered from the New Ireland Basin, east of Papua New Guinea, in order to investigate the late Quaternary eruptive history of the Tabar-Lihir-Tanga-Feni (TLTF) volcanic chain. Foraminifera d18O profiles were matched to the low-latitude oxygen isotope record to date the cores, which extend back to the early part of d18O Stage 9 (333 ka). Sedimentation rates decrease from >10 cm/1000 yr in cores near New Ireland to ~2 cm/1000 yr further offshore. The cores contain 36 discrete ash beds, mostly 1-8 cm thick and interpreted as either fallout or distal turbidite deposits. Most beds have compositionally homogeneous glass shard populations, indicating that they represent single volcanic events. Shards from all ash beds have the subduction-related pattern of strong enrichment in the large-ion lithophile elements relative to MORB, but three distinct compositional groups are apparent: Group A beds are shoshonitic and characterised by >1300 ppm Sr, high Ce/Yb and high Nb/Yb relative to MORB, Group B beds form a high-K series with MORB-like Nb/Yb but high Ce/Yb and well-developed negative Eu anomalies, whereas Group C beds are transitional between the low-K and medium-K series and characterised by flat chondrite-normalised REE patterns with low Nb/Yb relative to MORB. A comparison with published data from the TLTF chain, the New Britain volcanic arc and backarc including Rabaul, and Bagana on Bougainville demonstrates that only Group A beds share the distinctive phenocryst assemblage and shoshonitic geochemistry of the TLTF lavas. The crystal- and lithic-rich character of the Group A beds point to a nearby source, and their high Sr, Ce/Yb and Nb/Yb match those of Tanga and Feni lavas. A youthful stratocone on the eastern side of Babase Island in the Feni group is the most probable source. Group A beds younger than 20 ka are more fractionated than the older Group A beds, and record the progressive development of a shallow level magma chamber beneath the cone. In contrast, Group B beds represent glass-rich fallout from voluminous eruptions at Rabaul, whereas Group C beds represent distal glass-rich fallout from elsewhere along the volcanic front of the New Britain arc.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: