1000 resultados para Viganoni, Carlo Maria, 1786-1839.
Resumo:
Sign. : A4, 2[sol]4, 3*4, A-Z4, 2A-2X4
Resumo:
In this work, we introduce the Object Kinetic Monte Carlo (OKMC) simulator MMonCa and simulate the defect evolution in three different materials. We start by explaining the theory of OKMC and showing some details of how such theory is implemented by creating generic structures and algorithms in the objects that we want to simulate. Then we successfully reproduce simulated results for defect evolution in iron, silicon and tungsten using our simulator and compare with available experimental data and similar simulations. The comparisons validate MMonCa showing that it is powerful and flexible enough to be customized and used to study the damage evolution of defects in a wide range of solid materials.
Resumo:
Tít. tomado del principio del texto
Resumo:
We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3-, NO2-, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 µM) and increased to 125 µM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (-10.3 mmol O2 /m2 d) and decreased quasi-exponentially with water depth to -3.2 mmol O2 /m2 d. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N /m2 d. Overall, the sediments acted as net sink for DIN. Observed increases in delta 15NNO3 and delta 18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0 pro mille (15epsilon app) and 14.1 pro mille (18epsilon app). Measurements of delta 15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2-. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2-. The principal findings were that (i) net benthic 14N/15N fractionation (epsilon DEN) was 12.9 ± 1.7pro mille, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2- (-22 ± 1.9 pro mille), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported epsilon DEN for fine-grained sediments are much lower (4-8 pro mille). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater-seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.
Resumo:
Cavagna 10582: Bound with thirteen other Italian and Latin works, most from the 19th century; binder's title: "Opuscoli"; former shelf-mark Cavagna 10585.
Resumo:
Acquisition made accessible thanks to a 2015-2017 grant from the Council on Libraries and Information Resources.
Resumo:
Last leaf blank.