928 resultados para Vickers microhardness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The aim of this study was to assess the influence of curing time and power on the degree of conversion and surface microhardness of 3 orthodontic composites. Methods: One hundred eighty discs, 6 mm in diameter, were divided into 3 groups of 60 samples according to the composite used-Transbond XT (3M Unitek, Monrovia, Calif), Opal Bond MV (Ultradent, South Jordan, Utah), and Transbond Plus Color Change (3M Unitek)-and each group was further divided into 3 subgroups (n = 20). Five samples were used to measure conversion, and 15 were used to measure microhardness. A light-emitting diode curing unit with multiwavelength emission of broad light was used for curing at 3 power levels (530, 760, and 1520 mW) and 3 times (8.5, 6, and 3 seconds), always totaling 4.56 joules. Five specimens from each subgroup were ground and mixed with potassium bromide to produce 8-mm tablets to be compared with 5 others made similarly with the respective noncured composite. These were placed into a spectrometer, and software was used for analysis. A microhardness tester was used to take Knoop hardness (KHN) measurements in 15 discs of each subgroup. The data were analyzed with 2 analysis of variance tests at 2 levels. Results: Differences were found in the conversion degree of the composites cured at different times and powers (P < 0.01). The composites showed similar degrees of conversion when light cured at 8.5 seconds (80.7%) and 6 seconds (79.0%), but not at 3 seconds (75.0%). The conversion degrees of the composites were different, with group 3 (87.2%) higher than group 2 (83.5%), which was higher than group 1 (64.0%). Differences in microhardness were also found (P < 0.01), with lower microhardness at 8.5 seconds (35.2 KHN), but no difference was observed between 6 seconds (41.6 KHN) and 3 seconds (42.8 KHN). Group 3 had the highest surface microhardness (35.9 KHN) compared with group 2 (33.7 KHN) and group 1 (30.0 KHN). Conclusions: Curing time can be reduced up to 6 seconds by increasing the power, with a slight decrease in the degree of conversion at 3 seconds; the decrease has a positive effect on the surface microhardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This in vitro study aimed to evaluate the effect of bleaching agents on dentin microhardness during and after bleaching. Method and materials: Specimens were randomly assigned to seven groups (n = 15): Nite White Excel 2 Z [NW] 10% and 22%; Rembrandt [REM] 10% and 22%; Opalescence [OPA] 10% and 20%; and a placebo agent. The 42-day whitening treatment consisted of daily application of the agents to the dentin surfaces for 8 hours, followed by immersion in artificial saliva for 16 hours. After the bleaching treatment, specimens were kept immersed in artificial saliva for 14 days. Microhardness was measured at baseline, 8 hours, and 7, 14, 21, 28, 35, and 42 days of bleaching and during the posttreatment period (7 and 14 days). Results: The analysis of variance for split-plot showed a significant effect on the interaction between bleaching agent and time. Tukey's test and regression analyses revealed that during the bleaching period, the agents NW 10%, NW 22%, and OPA 20%, which did not differ from each other, did not alter dentin microhardness, showing constant microhardness values. There were no differences among REM 10%, REM 22%, and OPA 10%, which showed significant reductions in microhardness after day 14 compared to other agents. After bleaching procedures, there was an increase in dentin microhardness for all groups. Conclusion: Throughout the bleaching treatment, depending on the agent applied, dentin showed a transitory decrease in microhardness values. In the posttreatment period, artificial saliva presented a remineralizing effect on the bleached surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In engineering, for correct designing the structural components required for cyclical stresses, it is necessary to determine a limit of resistance to fatigue, which is the maximum amplitude of the applied tension under which the fatigue failure does not occurs after a certain number cycles. The marine environment is hostile, not only by the high pressure, corrosion, but also by low temperatures. Petrol Production units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 up to 30 years, and must therefore be prepared to support various efforts, such as tidal, wind currents and everything that is related. This paper focuses on a study on the fatigue behavior of microalloyed steel, API 5L Grade X70, used to transport oil and gas by pipelines. For analysis, we obtained the curves S-N (stress vs. number of cycles) using laboratory data collected from cylindrical longitudinal and transverse specimens used in axial fatigue test in accordance with ASTM E466. The tensile tests and microhardness were performed to characterize the mechanical properties of the samples, and it was found that the values meet the specifications of the standard API 5L. To characterize microstructurally the material, it was also made a metallographic analysis of the steel under study, and the origin of the fatigue crack was investigated with the support of a scanning electron microscope (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assessed the surface microhardness of compound resins cured by different light sources. Methods Three micro hybrid (Vit-l-escence, Amelogen Plus, Opallis) and one nanoparticle (Filtek Z350, 3M ESPETM Dental Products, St. Paul, USA) compound resins were selected. The resins were polymerized by a halogen light unit (Ultralux, Dabi Atlante, Ribeirão Preto, Brasil) with two tips, one semi-guided made of glass and another of painted acrylic and a LED-based source (UltraLume 2, Ultradent®, South Jordan, USA). Specimens constructed from a circular aluminum matrix were photopolymerized for 40 second after they received the compound resin and stored dry for 24 hours. After this period, a Vickers surface microhardness assay was performed, measuring the top (hardness 1) and base (hardness 2) surfaces four times each. Variance analyses were complemented by Newman-Keuls method, with significance set at 5%. Results The Opallis (FGM, Santa Catarina, Brasil) resin subjected to UltraLume 2 (Ultradent®, South Jordan, USA) obtained the lowest mean hardness values for the top surface. The Vit-l-escence (Ultradent®, South Jordan, USA) compound cured by Led UltraLume 2 (Ultradent®, South Jordan, USA) and by Ultralux PCP (Dabi Atlante, Ribeirão Preto, Brasil) halogen light obtained the highest mean hardness, followed by the Filtek Z350 (3M ESPETM Dental Products, St. Paul, USA) resin subjected to UltraLume 2 (Ultradent® South Jordan, USA). The Opallis (FGM, Santa Catarina, Brasil) resin cured by LED UltraLume 2 (Ultradent®, South Jordan, USA) also obtained the lowest mean hardness for the base surface and the Vit-L-Escence (Ultradent®, South Jordan, USA) resin obtained the highest value, followed by Amelogen Plus, when cured by Ultralux (Dabi Atlante, Ribeirão Preto, Brasil) using the semi-guided tip. Conclusion The polymerization and, consequently, the microhardness achieved by the LED unit was equivalent to those achieved by conventional halogen units for three of the four composites tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to verify the effect of three different types of dentifrices on the superficial microhardness of bovine enamel. Methods: Forty-eight 4x4mm dental fragments were polished and randomly divided into 4 groups: GI, conventional silica-based dentifrice; GII, hydrogen peroxide-based dentifrice; GIII, carbamide peroxide-based dentifrice; and GIV, immersion in artificial saliva. After polished, the specimens received five indentations of 25g static load, for 5 seconds. Subsequently, specimens from groups GI, GII and GIII were immersed in solution containing dentifrice and distilled water, in weight proportion of 1:2, for 15 minutes daily. After this period, fragments were rinsed in tap water and stored in artificial saliva at 37oC. This procedure was repeated for 21 days and then a new analysis of the microhardness was performed. Results and conclusion: The results were submitted to ANOVA and Fisher’s test at 5%. It was concluded that all samples treated with dentifrices showed hardness decrease, being most pronounced in dentifrices containing peroxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)