974 resultados para Vibro-acoustic
Resumo:
The coupling of surface acoustic waves propagating in two separated piezoelectric media is studied using the perturbation theory of Auld. The results of the analysis are applied to two configurations using Bi12GeO20 and CdS crystals. It is found that the loss due to coupling is about 7 dB at 50 MHz in the cases of (111)-cut, [110]-prop. Bi12GeO20 and Y-cut, 60°-X prop. CdS combination. On étudie le couplage des ondes acoustiques de surface se propageant sur deux milieux piezo-eléctriques par la théorie de perturbation de Auld. Les resultats d'analyse sont appliqué's aux deux configurations des cristanx Bi12GeO20 et CdS. On trouve que la perte par couplage est environ de 7 dB a 50 MHz dans le cas de combination de (111)-coupe, [110]-prop. Bi12GeO20 et Y-coupe, 60°-X prop. CdS.
Resumo:
An expression for the spectrum and cross spectrum of an acoustic field measured at two vertically separated sensors in shallow water has been obtained for any correlated noise sources distributed over the surface. Numerical results are presented for the case where the noise sources, white noise and wind-induced colored noise, are contained within a circular disk centered over the sensors. The acoustic field is generally inhomogeneous except when the channel is deep. The coherence function becomes real for a large disk, for a radius greater than 25 times the depth of the channel, decreases with further increase of the size of the disk, and finally tapers off after certain limiting size, approximately given by 1/alpha, where alpha is the attenuation coefficient.
Resumo:
The use of electroacoustic analogies suggests that a source of acoustical energy (such as an engine, compressor, blower, turbine, loudspeaker, etc.) can be characterized by an acoustic source pressure ps and internal source impedance Zs, analogous to the open-circuit voltage and internal impedance of an electrical source. The present paper shows analytically that the source characteristics evaluated by means of the indirect methods are independent of the loads selected; that is, the evaluated values of ps and Zs are unique, and that the results of the different methods (including the direct method) are identical. In addition, general relations have been derived here for the transfer of source characteristics from one station to another station across one or more acoustical elements, and also for combining several sources into a single equivalent source. Finally, all the conclusions are extended to the case of a uniformly moving medium, incorporating the convective as well as dissipative effects of the mean flow.
Resumo:
The present investigation of ion-acoustic waves is based on the study of the nonlinearity of plasma waves in a dispersive medium. Here the authors study ion-acoustic solitary waves in a warm ion plasma with non-isothermal electrons and then the results for solitary waves in a plasma with isothermal electrons are obtained. Incorporating the previous results obtained from the solitary wave solutions, the authors generalize the effect of negative ions on ion-acoustic waves in plasmas consisting of either a warm or cold ion species. A reflection phenomenon of ions in these waves is also studied. These results can be generalized, but the discussion is limited to a particular model of the plasma.
Resumo:
A fairly comprehensive computer program incorporating explicit expressions for the four-pole parameters of concentric-tube resonators, plug mufflers, and three-duct cross-flow perforated elements has been used for parametric studies. The parameters considered are hole diameter, the center-to-center distance between consecutive holes (which decides porosity), the incoming mean flow Mach number, the area expansion ratio, the number of partitions of chambers within a given overall shell length, and the relative lengths of these partitions or chambers, all normalized with respect to the exhaust pipe diameter. Transmission loss has been plotted as a function of a normalized frequency parameter. Additionally, the effect of the tail pipe length on insertion loss for an anechoic source has also been studied. These studies have been supplemented by empirical expressions for the normalized static pressure drop for different types of perforated-element mufflers developed from experimental observations.
Resumo:
The efficiency of acoustooptic (AO) interaction in YZ-cut proton exchanged (PE) LiNbO3 waveguides is theoretically analysed by determining the overlap between the optical and acoustic field distributions. The present analysis takes into account the perturbed SAW field distribution due to the presence of the PE layer on the LiNbO3 substrate determined by the rigorous layered medium approach. The overlap is found to be significant upto very high acoustic frequencies of the order of 5 GHz, whereas in the earlier analysis by vonHelmolt and Schaffer [6] for diffused waveguides, it was shown that the overlap integral rolls down to nearly zero at this high frequency range.
Resumo:
We address the long-standing problem of the origin of acoustic emission commonly observed during plastic deformation. We propose a framework to deal with the widely separated time scales of collective dislocation dynamics and elastic degrees of freedom to explain the nature of acoustic emission observed during the Portevin-Le Chatelier effect. The Ananthakrishna model is used as it explains most generic features of the phenomenon. Our results show that while acoustic emission bursts correlated with stress drops are well separated for the type C serrations, these bursts merge to form nearly continuous acoustic signals with overriding bursts for the propagating type A bands.
Resumo:
The source localization algorithms in the earlier works, mostly used non-planar arrays. If we consider scenarios like human-computer communication, or human-television communication where the microphones need to be placed on the computer monitor or television front panel, i.e we need to use the planar arrays. The algorithm proposed in 1], is a Linear Closed Form source localization algorithm (LCF algorithm) which is based on Time Difference of Arrivals (TDOAs) that are obtained from the data collected using the microphones. It assumes non-planar arrays. The LCF algorithm is applied to planar arrays in the current work. The relationship between the error in the source location estimate and the perturbation in the TDOAs is derived using first order perturbation analysis and validated using simulations. If the TDOAs are erroneous, both the coefficient matrix and the data matrix used for obtaining source location will be perturbed. So, the Total least squares solution for source localization is proposed in the current work. The sensitivity analysis of the source localization algorithm for planar arrays and non-planar arrays is done by introducing perturbation in the TDOAs and the microphone locations. It is shown that the error in the source location estimate is less when we use planar array instead of the particular non-planar array considered for same perturbation in the TDOAs or microphone location. The location of the reference microphone is proved to be important for getting an accurate source location estimate if we are using the LCF algorithm.
Resumo:
Notched three point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and during the fracture process acoustic emissions (AE) were simultaneously monitored. It was observed that AE energy could be related to fracture energy. An experimental study was done to understand the behavior of AE energy with parameters of concrete like its strength and size. In this study, AE energy was used as a quantitative measure of size independent specific fracture energy of concrete beams and the concepts of boundary effect and local fracture energy were used to obtain size independent AE energy from which size independent fracture energy was obtained. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Modeling of wave propagation in hoses, unlike in rigid pipes or waveguides, introduces a coupling between the inside medium, the hose wall, and the outside medium, This alters the axial wave number and thence the corresponding effective speed of sound inside the hose resulting in sound radiation into the outside medium, also called the breakout or shell noise, The existing literature on the subject is such that a hose cannot be integrated into the,whole piping system made up of sections of hoses, pipes, and mufflers to predict the acoustical performance in terms of transmission loss (TL), The present paper seeks to fill this gap, Three one-dimensional coupled wave equations are written to account for the presence of a yielding wall with a finite lumped transverse impedance of the hose material, The resulting wave equation can readily be reduced to a transfer matrix form using an effective wave number for a moving medium in a hose section, Incorporating the effect of fluid loading due to the outside medium also allows prediction of the transverse TL and the breakout noise, Axial TL and transverse TL have been combined into net TL needed by designers, Predictions of the axial as well as transverse TL are shown to compare well with those of a rigorous 3-D analysis using only one-hundredth of the computation time, Finally, results of some parametric studies are reported for engineers involved in the acoustical design of hoses. (C) 1996 Institute of Noise Control Engineering.
Leak Detection In Pressure Tubes Of A Pressurized Heavy-Water Reactor By Acoustic-Emission Technique
Resumo:
Leak detection in the fuel channels is one of the challenging problems during the in-service inspection (ISI) of Pressurised Heavy Water Reactors (PHWRs). In this paper, the use of an acoustic emission (AE) technique together with AE signal analysis is described, to detect a leak that was ncountered in one (or more) of the 306 fuel channels of the Madras Atomic Power Station (PHWR), Unit I. The paper describes the problems encountered during the ISI, the experimental methods adopted and the results obtained. Results obtained using acoustic emission signal analysis are compared with those obtained from other leak detection methods used in such cases.
Resumo:
SAW matched filter is commonly used in spread spectrum communication receivers in order to maximize the SNR prior to detection, At times the receiver would be a mobile one while the signal is processed at the IF level, In that case frequency deviations due to Doppler shift or temperature dependence of the acoustic medium used for SAW device would, severely effect it's performance, The impact of these errors on the receiver performance is analyzed on a generalised basis.
Resumo:
This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.