849 resultados para Viêt-nam


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground state magnetic properties are studied by incorporating the super-exchange interaction (J(se)) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (J(se)) and also depends on the number of (d-) electrons (N-d). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N-d). Also the density of d electrons at each site depends on the value of J and J(se).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiferroic Pb(Fe2/3W1/3)O-3 ceramics were synthesized via a modified two-stage Columbite method. Single phase formation was confirmed from the analysis of x-ray and neutron diffraction patterns recorded at room temperature. Structural analysis of the diffraction data reveals cubic phase (space group Pm-3m) for the title compound. Magnetic structure of the title compound at room temperature exhibits G-type antiferromagnetic structure. The Mossbauer spectroscopy and Electron Paramagnetic Resonance (EPR) studies were carried out at 300 K. The isomer shift and quadrupole splitting of the Mossbauer spectra confirms the trivalent state of iron (Fe3+). The Mossbauer spectra also suggest that the iron and tungsten are randomly distributed at the octahedral, B site. EPR spectra show a single broad line associated with Fe3+ ions. Both spectra clearly exhibit weak ferromagnetic behaviour of Pb(Fe2/3W1/3)O-3 ceramic at 300 K. Considering neutron diffraction, Mossbauer and EPR results together, it may be stated here that Pb(Fe2/3W1/3)O-3 exhibits antiferromagnetic behavior along with weak ferromagnetism at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of substitution of Bi atom instead of S atoms on the structural and optical properties of thin films of As40S60 are reported. The density is found to be increased with the addition Bi heavy metal into As2S3. The amorphous to polycrystalline structure of the bulk sample is observed for Bi more than 7%. The glass transition temperature is found to be decreased with addition of Bi. The absorption edge shifts to shorter wavelength, thereby decreasing optical band gap of BixAs(40)S(60-x) (x= 0,2 and 4% here) film. The optical parameter change is discussed from the stand point of chemical bonds formed in the films and related to the defect states produced due to incorporation of Bi atoms in place of chalcogenide S atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min(-1). The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, we report the effect of Te deposition onto As2Se3 film which affects the optical properties. The Te/As2Se3 film was illuminated with 532 nm laser to study the photo induced diffusion. The prepared As2Se3, Te/As2Se3 films were characterized by X-ray diffraction which show a completely amorphous nature. On the basis of optical transmission data carried out by Fourier Transform infrared Spectroscopy, a non direct transition was found for these films. The optical bandgap is found to be decreased with Te deposition and photo darkening phenomena is observed for the diffused film. The change in the optical constants are also supported by the corresponding change in different types of bonds which are being analyzed by X-ray photoelectron spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 degrees C to 450 degrees C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 degrees C to 400 degrees C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline tin oxide (SnO2) material of different particle size was synthesized using gel combustion method by varying oxidizer (HNO3) and keeping fuel as a constant. The prepared samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscope (EDAX). The effect of oxidizer in the gel combustion method was investigated by inspecting the particle size of nano SnO2 powder. The particle size was found to be increases with the increase of oxidizer from 8 to 12 moles. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the particle size in the range of 17 to 31 nm which was calculated by Scherer's formula. The particles and temperature dependence of direct (DC) electrical conductivity of SnO2 nanomaterial was studied using Keithley source meter. The DC electrical conductivity of SnO2 nanomaterial increases with the temperature from 80 to 300K and decrease with the particle size at constant temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have synthesized Fe/Fe3C magnetic nanoparticles embedded in an amorphous carbon globule by pyrolysing of benzene, ferrocene and hydroboric acid. The diameter of the globules is similar to 1 mu m and that of Fe/Fe3C magnetic nanoparticles is similar to 40 nm. The globules exhibit ferromagnetic like behavior and the magnetization as well as the coercivity is found to increases with decreasing temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of Eu3+ activated Ce0.5Al0.5O2-delta nanophosphors have been synthesized by the nitrate - citrate gel combustion method. All the compounds crystallized in the cubic fluorite CeO2 structure with space group Fm-3m (No. 225). FESEM revealed the flakes-like morphology. The average particle size was estimated from TEM studies and found to be in the range 15-25 nm. The values were in good agreement with the Scherer's method. In photoluminescence (PL) spectra, the D-5(0) -> F-7(2) (612 nm) transition dominates than other transitions which indicates that the Eu3+ ions occupy a site without inversion center. CIE chromaticity diagram confirmed that these nanophosphors can be useful in the fabrication of red component in white light emitting diodes (WLEDs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of In2O3 octahedrons is carried out successfully by heating Indium metal pieces in air ambient. The sample is characterized by scanning electron microscopy (SEM), Energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and Raman spectroscopy. The as-prepared In2O3 octahedrons are highly crystalline and exhibit body centered cubic structure. Room temperature and temperature (293-453K) dependence photoluminescence reveals a deep levelbroad emission of yellowish-orange spectra centered around 605 nm. The emission is due to the presence of defect levels in the band gap of materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Young's modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from similar to 10(-4) to 10(6) s(-1). Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.