967 resultados para Vegetation management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations were carried out in wet and dry pasture. Coenological recordings were taken in three zones. The first zone (“A”) located 0-50 m near the stable, second zone (“B”) located 50-150 m from the stable, while the third zone (“C”) located farther than 150 m. We have carried out analyses of ecological and environmental factors and life form types. Based on our results for both dry and wet grasslands, quadrates of “A” zone were well isolated from the rest of the zones. Overgrazing, which involves considerable trampling, vanishes differences among vegetations, thereby promotes weed and disturbance tolerant rich vegetation. The lowest species number and diversity could be found here. Due to the nitrogen enrichment due to the constant presence of livestock, drier and less heat demanding habitat developed in the “A” zones, according to the environmental indicators. Because of the change in management, conservation and diversity values of “C” zone increased, however, according to nature protection values it underperformed compared to “B” zone. According to the sample area, wet grasslands from the sandy areas of Kiskunság, preserve nature protection values and grass composition better moving away from stables, due to less grazing pressure. Drier backgrounds tolerate stronger grazing pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (‘‘S332’’) and its successor station (‘‘S332D’’). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg−1 dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, including WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Okeechobee, Florida, located in the middle of the larger Kissimmee River-Lake Okeechobee-Everglades ecosystem in South Florida, serves a variety of ecosystem and water management functions including fish and wildlife habitat, flood control, water supply, and source water for environmental restoration. As a result, the ecological status of Lake Okeechobee plays a significant role in defining the overall success of the greater Everglades ecosystem restoration initiative. One of the major ecological indicators of Lake Okeechobee condition focuses on the near-shore and littoral zone regions as characterized by the distribution and abundance of submerged aquatic vegetation (SAV) and giant bulrush (Scirpus californicus(C.A. Mey.) Steud.). The objective of this study is to present a stoplight restoration report card communication system, common to all 11 indicators noted in this special journal issue, as a means to convey the status of SAV and bulrush in Lake Okeechobee. The report card could be used by managers, policy makers, scientists and the public to effectively evaluate and distill information about the ecological status in South Florida. Our assessment of the areal distribution of SAV in Lake Okeechobee is based on a combination of empirical SAV monitoring and output from a SAV habitat suitability model. Bulrush status in the lake is related to a suitability index linked to adult survival and seedling establishment metrics. Overall, presentation of these performance metrics in a stoplight format enables an evaluation of how the status of two major components of Lake Okeechobee relates to the South Florida restoration program, and how the status of the lake influences restoration efforts in South Florida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrologic modifications have negatively impacted the Florida Everglades in numerous significant ways. The compartmentalization of the once continuously flowing system into the Water Conservation Areas (WCAs) caused disruption of the slow natural flow of water south from Lake Okeechobee through the Everglades to Florida Bay. The ponding of water in the WCAs, the linking of water flow to controlled water levels, and the management of water levels for anthropogenic vs. ecological well-being has caused a reduction in the spatial heterogeneity of the Everglades leading to greater uniformity in topography and vegetation. These effects are noticeable as the degradation in structure of the Everglades Ridge and Slough environment and associated Tree Islands. In aquatic systems water flow is of fundamental importance in shaping the structure and function of the ecosystem. The organized patterns of parallel orientation of ridges, sloughs, and tear-drop shaped tree islands along historic flow paths attest to the importance of water movement in structuring this system. Our main objective was to operate and manage the LILA facility to provide a broad potential as a research platform for an integrated group of multidisciplinary, multi-agency scientists collaborating on multifunctional studies aimed primarily at determining the effects of CERP water management scenarios on the ecology of tree islands and ridge and slough habitats. We support Everglades water management, CERP, and the Long-Term Plan by defining hydrologic regimes that sustain healthy tree islands and ridge and slough ecosystems. Information gained through this project will help to reduce the uncertainty of predicting the tree island and ridge and slough ecosystem response to changes in hydrologic conditions. Additionally, we have developed the LILA site as a visual example of Everglades restoration programs in action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document summarizes the activities that were accomplished in FY 2009 on the research project “Cape Sable seaside sparrow habitat – Vegetation Monitoring”, a collaborative effort among the US Army Corps of Engineers, Florida International University, and the US Geological Survey. The major activities in 2009 included field work, data analysis and presentations. The results of 2009 field work were presented at the 4th International Congress of Fire Ecology and Management, Savannah, GA from November 30 to Dec 5, 2009 and at the Cape Sable seaside sparrow (CSSS) Fire Meeting, held at the Krome Center, Homestead, FL on December 8, 2009. Field sampling was conducted between March 23 and June 3, 2009, during which we resurveyed 234 sites: 191 Census sites, 3 sites on Transect B, 7 sites on Transect D, and 33 sites on Transect F. The number of sites sampled in 2009 was higher than in any previous year, primarily because a large number of sites burned in Mustang Corner fire and three other wild fires in 2008 were included in 2009 sampling. At all sites surveyed in 2009, we recorded structural and compositional vegetation parameters following the methods used in previous years (2003-2008) and tagged shrubs and trees (woody plants > 1 m) present in the 5 x 60 m plots. In addition, for the first time, we measured height of sawgrass (Cladium jamaicense) stubble in the compositional plots at the sites that were burned in 2008. Field data were entered by field crews, and were thoroughly checked by Jay Sah (Co-PI) to ensure that the data were complete, correct, and compliant with sampling methodologies. The data are stored under a project folder on a shared network drive maintained by the Southeast Environmental Research Center (SERC) at FIU. The shared network drive is backed up daily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pine rocklands of South Florida are characterized by an herbaceous flora with many narrowly endemic taxa, a diverse shrub layer containing several palms and numerous tropical hardwoods, and an overstory of south Florida slash pine (Pinus elliottii var. densa). Fire has been considered as an important environmental factor for these ecosystems, since in the absence of fire these pine forests are replaced by dense hardwood communities, resulting in loss of the characteristic pineland herb flora. Hence, in the Florida Keys pine forests, prescribed fire has been used since the creation of the National Key Deer Refuge. However, such prescribed burns were conducted in the Refuge mainly for fuel reduction, without much consideration of ecological factors. The USGS and Florida International University conducted a research study for four years, from 1998 to 2001, the objective of which was to document the response of pine rockland vegetation to a range of fire management options and to provide Fish and Wildlife Service and other land managers with information useful in deciding when and where to burn to perpetuate these unique pine forests. This study is described in detail in Snyder et al. (2005).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigated the relationship between vegetation and modern-pollen rain along the elevational gradient of Mount Paggeo. We apply multivariate data analysis to assess the relationship between vegetation and modern-pollen rain and quantify the representativeness of forest zones. This study represents the first statistical analysis of pollen-vegetation relationship along an elevational gradient in Greece. Hence, this paper improves confidence in interpretation of palynological records from north-eastern Greece and may refine past climate reconstructions for a more accurate comparison of data and modelling. Numerical classification and ordination were performed on pollen data to assess differences among plant communities that beech (Fagus sylvatica) dominates or co-dominates. The results show a strong relationship between altitude, arboreal cover, human impact and variations in pollen and nonpollen palynomorph taxa percentages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis analyses the influence of qualitative and quantitative herbage production on seasonal rangelands, and of herd and pasture use strategies on feed intake, body mass development and reproductive performance of sheep and goats in the Altai mountain region of Bulgan county (soum) in Khovd province (aimag). This westernmost county of Mongolia is characterized by a very poor road network and thus very difficult access to regional and national markets. The thesis explores in this localized context the current rural development, the economic settings and political measures that affect the traditional extensive livestock husbandry system and its importance for rural livelihoods. Livestock management practices still follow the traditional transhumant mode, fully relying on natural pasture. This renders animal feeding very vulnerable to the highly variable climatic conditions which is one of many reasons for gradually declining quantity and quality of pasture vegetation. Small ruminants, and especially goats, are the main important species securing economic viability of their owners’ livelihood, and they are well adapted to the harsh continental climate and the present low input management practices. It is likely that small ruminants will keep their vital role for the rural community in the future, since the weak local infrastructure and slow market developments currently do not allow many income diversification options. Since the profitability of a single animal is low, animal numbers tend to increase, whereas herd management does not change. Possibilities to improve the current livestock management and thus herders’ livelihoods in an environmentally, economically and socially sustainable manner are simulated through bio-economic modelling and the implications are discussed at the regional and national scale. To increase the welfare of the local population, a substantial infrastructural and market development is needed, which needs to be accompanied by suitable pasture management schemes and policies