990 resultados para Vector sensor
Resumo:
This paper proposes an approach to obtain a localisation that is robust to smoke by exploiting multiple sensing modalities: visual and infrared (IR) cameras. This localisation is based on a state-of-the-art visual SLAM algorithm. First, we show that a reasonably accurate localisation can be obtained in the presence of smoke by using only an IR camera, a sensor that is hardly affected by smoke, contrary to a visual camera (operating in the visible spectrum). Second, we demonstrate that improved results can be obtained by combining the information from the two sensor modalities (visual and IR cameras). Third, we show that by detecting the impact of smoke on the visual images using a data quality metric, we can anticipate and mitigate the degradation in performance of the localisation by discarding the most affected data. The experimental validation presents multiple trajectories estimated by the various methods considered, all thoroughly compared to an accurate dGPS/INS reference.
Resumo:
In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.
Resumo:
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.
Resumo:
Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for corrosion detection of structures. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties for corrosion detection. The test specimens were subjected to real life corrosion experimental tests and the results confirm that the electrical resistance of the sensor electrode was dramatically changed due to corrosion.
Resumo:
The operation of Autonomous Underwater Vehicles (AUVs) within underwater sensor network fields provides an opportunity to reuse the network infrastructure for long baseline localisation of the AUV. Computationally efficient localisation can be accomplished using off-the-shelf hardware that is comparatively inexpensive and which could already be deployed in the environment for monitoring purposes. This paper describes the development of a particle filter based localisation system which is implemented onboard an AUV in real-time using ranging information obtained from an ad-hoc underwater sensor network. An experimental demonstration of this approach was conducted in a lake with results presented illustrating network communication and localisation performance.
Resumo:
Suppose two parties, holding vectors A = (a 1,a 2,...,a n ) and B = (b 1,b 2,...,b n ) respectively, wish to know whether a i > b i for all i, without disclosing any private input. This problem is called the vector dominance problem, and is closely related to the well-studied problem for securely comparing two numbers (Yao’s millionaires problem). In this paper, we propose several protocols for this problem, which improve upon existing protocols on round complexity or communication/computation complexity.
Resumo:
This study presents an acoustic emission (AE) based fault diagnosis for low speed bearing using multi-class relevance vector machine (RVM). A low speed test rig was developed to simulate the various defects with shaft speeds as low as 10 rpm under several loading conditions. The data was acquired using anAEsensor with the test bearing operating at a constant loading (5 kN) andwith a speed range from20 to 80 rpm. This study is aimed at finding a reliable method/tool for low speed machines fault diagnosis based on AE signal. In the present study, component analysis was performed to extract the bearing feature and to reduce the dimensionality of original data feature. The result shows that multi-class RVM offers a promising approach for fault diagnosis of low speed machines.
Resumo:
Binary Ti vectors are the plasmid vectors of choice in Agrobacterium-mediated plant transformation protocols. The pGreen series of binary Ti vectors are configured for ease-of-use and to meet the demands of a wide range of transformation procedures for many plant species. This plasmid system allows any arrangement of selectable marker and reporter gene at the right and left T-DNA borders without compromising the choice of restriction sites for cloning, since the pGreen cloning sites are based on the well-known pBluescript general vector plasmids. Its size and copy number in Escherichia coli offers increased efficiencies in routine in vitro recombination procedures. pGreen can replicate in Agrobacterium only if another plasmid, pSoup, is co-resident in the same strain. pSoup provides replication functions in trans for pGreen. The removal of RepA and Mob functions has enabled the size of pGreen to be kept to a minimum. Versions of pGreen have been used to transform several plant species with the same efficiencies as other binary Ti vectors. Information on the pGreen plasmid system is supplemented by an Internet site (http://www.pgreen.ac.uk) through which comprehensive information, protocols, order forms and lists of different pGreen marker gene permutations can be found.
Resumo:
In a conventional ac motor drive using field-oriented control, a dc-link voltage, speed, and at least two current sensors are required. Hence, in the event of sensor failure, the performance of the drive system can be severely compromised. This paper presents a sensor fault-tolerant control strategy for interior permanent-magnet synchronous motor (IPMSM) drives. Three independent observers are proposed to estimate the speed, dc-link voltage, and currents of the machine. If a sensor fault is detected, the drive system isolates the faulty sensor while retaining the remaining functional ones. The signal is then acquired from the corresponding observer in order to maintain the operation of the drive system. The experimental results provided verify the effectiveness of the proposed approach.
Resumo:
The objective of the research was to determine the optimal location and method of attachment for accelerometer-based motion sensors, and to validate their ability to differentiate rest and increases in speed in healthy dogs moving on a treadmill. Two accelerometers were placed on a harness between the scapulae of dogs with one in a pouch and one directly attached to the harness. Two additional accelerometers were placed (pouched and not pouched) ventrally on the dog's collar. Data were recorded in 1. s epochs with dogs moving in stages lasting 3. min each on a treadmill: (1) at rest, lateral recumbency, (2) treadmill at 0% slope, 3. km/h, (3) treadmill at 0% slope, 5. km/h, (4) treadmill at 0% slope, 7. km/h, (5) treadmill at 5% slope, 5. km/h, and; (6) treadmill at 5% slope, 7. km/h. Only the harness with the accelerometer in a pouch along the dorsal midline yielded statistically significant increases (P< 0.05) in vector magnitude as walking speed of the dogs increased (5-7. km/h) while on the treadmill. Statistically significant increases in vector magnitude were detected in the dogs as the walking speed increased from 5 to 7. km/h, however, changes in vector magnitude were not detected when activity intensity was increased as a result of walking up a 5% grade. Accelerometers are a valid and objective tool able to discriminate between and monitor different levels of activity in dogs in terms of speed of movement but not in energy expenditure that occurs with movement up hill.
Resumo:
Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.
Resumo:
Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
We introduce the MiniOrb platform, a combined sensor and interaction platform built to understand and encourage the gathering of data around personal indoor climate preferences in office environments. The platform consists of a sensor device, gathering localised environmental data and an attached tangible interaction and ambient display device. This device allows users to understand their local environment and record preferences with regards to their preferred level of office comfort. In addition to the tangible device we built a web-based mobile application that allowed users to record comfort preferences through a different interface. This paper describes the design goals and technical setup of the MiniOrb platform.
Resumo:
The response of an originally developed catalytic sensor with a Nb2 O5 nanowire array at its outer surface to the varying density of O atoms is experimentally and numerically studied. This technique can be used to measure one order of magnitude lower densities of O atoms and achieve a stable linear response in a significantly broader pressure range compared to conventional catalytic probes with a flat surface. The nanostructured outer surface also acts as a thermal barrier against sensor overheating. This approach is generic and can be used for reactive species detection in other reactive gas environments.