897 resultados para Vascular Cell Adhesion Molecule-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the microvessel density by comparing the performance of anti-factor VIII-related antigen, anti-CD31 and, anti-CD34 monoclonal antibodies in breast cancer. Methods: Twenty-three postmenopausal women diagnosed with Stage II breast cancer submitted to definitive surgical treatment were evaluated. The monoclonal antibodies used were anti-factor VIII, anti-CD31 and anti-CD34. Microvessels were counted in the areas of highest microvessel density in ten random fields (200 x). The data were analyzed using the Kruskal-Wallis nonparametric test (p < 0.05). Results: Mean microvessel densities with anti-factor VIII, anti-CD31 and anti-CD34 were 4.16 +/- 0.38, 4.09 +/- 0.23 and 6.59 +/- 0.42, respectively. Microvessel density as assessed by anti-CD34 was significantly greater than that detected by anti-CD31 or anti-factor VIII (p < 0.0001). There was no statistically significant difference between anti-CD31 and anti-factor VIII (p = 0.4889). Conclusion: The density of stained microvessels was greater and staining was more intense with anti-CD34 compared to anti-CD31 and anti-factor VII-related antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that BJcuL, a lectin purified from Bothrops jararacussu venom, exerts cytotoxic effects to gastric carcinoma cells MKN45 and AGS. This effect was due to the direct interaction with specific glycans on the cells surface and was observed by cell viability decrease, disorganization of actin filaments and apoptosis. In addition, BJcuL was able to reduce tumor cell adhesion to matrigel, what was inhibited by specific carbohydrate or partially inhibited when cells were pre-incubated with matrigel. Our results suggest that BJcuL was able to promote apoptosis in both tumor cells lines and therefore has a prospect for potential use in cancer therapy. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) and circulating cellular adhesion molecules (CAMs) predict cardiovascular risk. We hypothesized a positive relationship between PTSD caused by myocardial infarction (MI) and soluble CAMs. We enrolled 22 post-MI patients with interviewer-rated PTSD and 22 post-MI patients with no PTSD. At 32±6months after index MI, all patients were re-scheduled to undergo the Clinician-Administered PTSD Scale (CAPS) interview and had blood collected to assess soluble CAMs at rest and after the CAPS interview. Relative to patients with no PTSD, those with PTSD had significantly higher levels of soluble vascular cellular adhesion molecule (sVCAM)-1 and intercellular adhesion molecule (sICAM)-1 at rest and, controlling for resting CAM levels, significantly higher sVCAM-1 and sICAM-1 after the interview. Greater severity of PTSD predicted significantly higher resting levels of sVCAM-1 and soluble P-selectin in patients with PTSD. At follow-up, patients with persistent PTSD (n=15) and those who had remitted (n=7) did not significantly differ in CAM levels at rest and after the interview; however, both these groups had significantly higher sVCAM-1 and sICAM-1 at rest and also after the interview compared to patients with no PTSD. Elevated levels of circulating CAMs might help explain the psychophysiologic link of PTSD with cardiovascular risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of various combinations of enamel matrix derivative (EMD) and grafting materials has been shown to promote periodontal wound healing/regeneration. However, the downstream cellular behavior of periodontal ligament (PDL) cells and osteoblasts has not yet been studied. Furthermore, it is unknown to what extent the bleeding during regenerative surgery may influence the adsorption of exogenous proteins to the surface of bone grafting materials and the subsequent cellular behavior. In the present study, the aim is to test EMD adsorption to the surface of natural bone mineral (NBM) particles in the presence of blood and determine the effect of EMD coating to NBM particles on downstream cellular pathways, such as adhesion, proliferation, and differentiation of primary human osteoblasts and PDL cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibiting the α4 subunit of the integrin heterodimers α4β1 and α4β7 with the mab natalizumab is an effective treatment of multiple sclerosis (MS). Which of the two α4 heterodimers is involved in disease pathogenesis has, however, remained controversial. Whereas the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, is ameliorated in β7-integrin-deficient C57BL/6 mice, neutralizing antibodies against the β7-integrin subunit or the α4β7-integrin heterodimer fail to interfere with EAE pathogenesis in the SJL mouse. To facilitate α4β7-integrin-mediated immune-cell trafficking across the blood-brain barrier (BBB), we established transgenic C57BL/6 mice with endothelial cell-specific, inducible expression of the α4β7-integrin ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 using the tetracycline (TET)-OFF system. Although TET-regulated MAdCAM-1 induced α4β7-integrin mediated interaction of α4β7(+) /α4β1(-) T cells with the BBB in vitro and in vivo, it failed to influence EAE pathogenesis in C57BL/6 mice. TET-regulated MAdCAM-1 on the BBB neither changed the localization of central nervous system (CNS) perivascular inflammatory cuffs nor did it enhance the percentage of α4β7-integrin(+) inflammatory cells within the CNS during EAE. In conclusion, our study demonstrates that ectopic expression of MAdCAM-1 at the BBB does not increase α4β7-integrin-mediated immune cell trafficking into the CNS during MOG(aa35-55)-induced EAE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The descriptive term papillary glioneuronal tumor (PGNT) has been repeatedly applied to a morphologic subset of low-grade mixed glial-neuronal neoplasia of juvenile and young adult patients. We report on a 13-year-old boy with PGNT of the left temporal lobe, who presented with headaches and a single generalized seizure. On magnetic resonance imaging, tumor was seen as a large, moderately enhancing paraventricular mass with cyst-mural nodule configuration and slight midline shift. Perifocal edema was virtually absent. Gross total resection could be performed, followed by an uneventful recovery. Histologically, the tumor exhibited similar, if not identical, features as reported previously. These comprised a patterned biphasic mixture of sheets of synaptophysin-expressing small round cells and pseudorosettes of GFAP-positive rudimentary astrocytes along vascular cores. Focally, the latter imprinted a pseudopapillary aspect on this otherwise solid lesion. Both cellular components expressed non-polysialylated neural cell adhesion molecule (NCAM)-L species, and several overlapping areas of synaptophysin and GFAP immunoreactivity were present. The mean MIB-1 labeling index remained below 1%. Signs of anaplasia, in particular mitotic figures, endothelial proliferation, or necrosis were consistently lacking. We perceive PGNT as a clinically and morphologically well-delineated subgroup of extraventricular neurocytic neoplasia, whose paradigmatic presentation may allow for consideration as an entity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important step in the pathogenesis of multiple sclerosis is adhesion and transmigration of encephalitogenic T cells across brain endothelial cells (EC) which strongly relies on interaction with EC-expressed adhesion molecules. We provide molecular evidence that the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) is a negative regulator of brain EC inflammation. The PPARgamma agonist pioglitazone reduces transendothelial migration of encephalitogenic T cells across TNFalpha-stimulated brain EC. This effect is clearly PPARgamma mediated, as lentiviral PPARgamma overexpression in brain EC results in selective abrogation of inflammation-induced ICAM-1 and VCAM-1 upregulation and subsequent adhesion and transmigration of T cells. We therefore propose that PPARgamma in brain EC may be exploited to target detrimental EC-T cell interactions under inflammatory conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Programmed cell death 1 (PD-1) receptor triggering by PD ligand 1 (PD-L1) inhibits T cell activation. PD-L1 expression was detected in different malignancies and associated with poor prognosis. Therapeutic antibodies inhibiting PD-1/PD-L1 interaction have been developed. MATERIALS AND METHODS A tissue microarray (n=1491) including healthy colon mucosa and clinically annotated colorectal cancer (CRC) specimens was stained with two PD-L1 specific antibody preparations. Surgically excised CRC specimens were enzymatically digested and analysed for cluster of differentiation 8 (CD8) and PD-1 expression. RESULTS Strong PD-L1 expression was observed in 37% of mismatch repair (MMR)-proficient and in 29% of MMR-deficient CRC. In MMR-proficient CRC strong PD-L1 expression correlated with infiltration by CD8(+) lymphocytes (P=0.0001) which did not express PD-1. In univariate analysis, strong PD-L1 expression in MMR-proficient CRC was significantly associated with early T stage, absence of lymph node metastases, lower tumour grade, absence of vascular invasion and significantly improved survival in training (P=0.0001) and validation (P=0.03) sets. A similar trend (P=0.052) was also detectable in multivariate analysis including age, sex, T stage, N stage, tumour grade, vascular invasion, invasive margin and MMR status. Interestingly, programmed death receptor ligand 1 (PDL-1) and interferon (IFN)-γ gene expression, as detected by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in fresh frozen CRC specimens (n=42) were found to be significantly associated (r=0.33, P=0.03). CONCLUSION PD-L1 expression is paradoxically associated with improved survival in MMR-proficient CRC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acquisition of the metastatic melanoma phenotype is associated with increased expression of the melanoma cell adhesion molecule MCAM/MUC18 (CD146). However, the mechanism by which MUC18 contributes to melanoma metastasis remains unclear. Herein, we stably silenced MUC18 expression utilizing lentivirus-incorporated small hairpin RNA, in two metastatic melanoma cell lines, A375SM and C8161, and conducted cDNA microarray analysis. We identified and validated that the transcriptional regulator, Inhibitor of DNA Binding-1 (Id-1), previously shown to function as an oncogene in several malignancies, was downregulated by 5.6-fold following MUC18 silencing. Additionally, we found that MUC18 regulated Id-1 expression at the transcriptional level via ATF-3. Interestingly, ATF-3 was upregulated by 6.9 fold in our cDNA microarray analysis following MUC18 silencing. ChIP analysis showed increased binding of ATF-3 to the Id-1 promoter after MUC18 silencing, while mutation of the ATF-3 binding site on the Id-1 promoter increased Id-1 promoter activity in MUC18-silenced cells. These Data suggest that MUC18 silencing promotes inhibition of Id-1 expression by increasing ATF-3 expression and binding to the Id-1 promoter. Rescue of MUC18 reverted the expression of Id-1 and ATF-3, thus validating that they are not off-target effects of MUC18. To further assess the role of Id-1 in melanoma invasion and metastasis, we overexpressed Id-1 in MUC18-silenced cells. Overexpression of Id-1 in MUC18-silenced cells resulted in increased cell invasion, as well as increased expression and activity of MMP-2. Our data further reveal that Id-1 regulates MMP-2 at the transcriptional level through Sp1 and Ets-1. This is the first report to demonstrate that MUC18 does not act exclusively in cell adherence, but is also involved in cell signaling that regulates the expression of genes, such as Id-1 and ATF-3, thus contributing to the metastatic melanoma phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Band 4.1B is a cytoskeletal adaptor protein that regulates various cellular behavior; however, the mechanisms by which Band 4.1B contributes to intracellular signaling are unclear. This project addresses in vivo and in vitro functions for Band 4.1B in integrin-mediated cell adhesion and signaling. Band 4.1B has been shown to bind to β8 integrin, although cooperative functions of these two proteins have not been determined. Here, functional links between β8 integrin and Band 4.1B were investigated using gene knockout strategies. Ablation of β8 integrin and Band 4.1B genes resulted in impaired cardiac morphogenesis, leading to embryonic lethality by E11.5. These embryos displayed malformation of the outflow tract that was likely linked to abnormal regulation of cardiac neural crest migration. These data indicate the importance of cooperative signaling between β8 integrin and Band 4.1B in cardiac development. The involvement of Band 4.1B in integrin-mediated cell adhesion and signaling was further demonstrated by studying its functional roles in vitro. Band 4.1B is highly expressed in the brain, but its signaling in astrocytes is not understood. Here, Band 4.1B was shown to promote cell spreading likely by interacting with β1 integrin via its band 4.1, ezrin, radixin, and moesin (FERM) domain in cell adhesions. In astrocytes, both Band 4.1B and β1 integrin were expressed in cell-ECM contact sites during early cell spreading. Exogenous expression of Band 4.1B, especially its FERM domain, enhanced cell spreading on fibronectin, an ECM ligand for β1 integrin. However, the increased cell spreading was prohibited by blocking β1 integrin. These findings suggest that Band 4.1B is crucial for early adhesion assembly and/or signaling that are mediated by β1 integrin. Collectively, this study was the first to establish Band 4.1B as a modulator of integrin-mediated adhesion and signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactosyltransferase (GalTase) is localized in the Golgi, where it functions in oligosaccharide synthesis, as well as on the cell surface where it serves as a cell adhesion molecule. GalTase-specific adhesions are functional in a number of important biological events, including F9 embryonal carcinoma (EC) cell adhesions. GalTase-based adhesions are formed by recognition and binding to terminal N-acetylglucosamine (GlcNAc) residues on its glycoprotein counterpart on adjacent cell surfaces. The object of this work has been to investigate the formation and function of GalTase-specific adhesions during F9 cell growth and differentiation. We initially investigated GalTase synthesis during differentiation and found that the increase in GalTase activity was specific for the Golgi compartment; surface GalTase levels remained constant during differentiation. These data indicated that the increase in cell adhesions expected with increased cell-matrix interaction in differentiated F9 cells is not the consequence of increased surface GalTase expression and, more interestingly, that the two pools of GalTase are under differential regulation. Synthesis and recognition of the consociate glycoprotein component was next investigated. Surface GalTase recognized several surface glycoproteins in a pattern that changes with differentiation. Uvomorulin, lysosome-associated membrane protein-1 (LAMP-1), and laminin were recognized by surface GalTase and are, therefore, potential components in GalTase-specific adhesions. Furthermore, these interactions were aberrant in an adhesion-defective F9 cell line that results, at least in part, from abnormal oligosaccharide synthesis. The function played by surface GalTase in growth and induction of differentiation was examined. Inhibition of surface GalTase function by a panel of reagents inhibited F9 cell growth. GalTase expression at both the transcription and protein levels were differentially regulated during the cell cycle, with surface expression greatest in the G1 phase. Disruption of GalTase adhesion by exposure to anti-GalTase antibodies during this period resulted in extension of the G2 phase, a result similar to that seen with agents known to inhibit growth and induce differentiation. Finally, other studies have suggested that a subset of cell adhesion molecules have the capability to induce differentiation in EC cells systems. We have determined in F9 cells that dissociating GalTase adhesion by galactosylation of and release of the consociate glycoproteins induces differentiation, as defined by increased laminin synthesis. The ability to induce differentiation by surface galactosylation was greatest in cells grown in cultures promoting cell-cell adhesions, relative to cultures with minimal cell-cell interactions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Asialoglycoprotein receptor-1 (ASGR1) mediates capture and phagocytosis of platelets in pig-to-primate liver xenotransplantation. However, thrombocytopenia is also observed in xenotransplantation or xenoperfusion of other porcine organs than liver. We therefore assessed ASGR1 expression as well as ASGR1-mediated xenogeneic platelet phagocytosis in vitro and ex vivo on porcine aortic, femoral arterial, and liver sinusoidal endothelial cells (PAEC/PFAEC/PLSEC). METHODS Porcine forelimbs were perfused with whole, heparinized human or autologous pig blood. Platelets were counted at regular intervals. Pig limb muscle and liver, as well as PAEC/PFAEC/PLSEC, were characterized for ASGR1 expression. In vitro, PAEC cultured on microcarrier beads and incubated with non-anticoagulated human blood were used to study binding of human platelets and platelet-white blood cell aggregation. Carboxyfluorescein diacetate succinimidyl ester-labeled human platelets were exposed to PAEC/PFAEC/PLSEC and analyzed for ASGR1-mediated phagocytosis. RESULTS Human platelet numbers decreased from 102 ± 33 at beginning to 13 ± 6 × 10/μL (P < 0.0001) after 10 minutes of perfusion, whereas no significant decrease of platelets was seen during autologous perfusions (171 ± 26 to 122 ± 95 × 10/μL). The PAEC, PFAEC, and PLSEC all showed similar ASGR1 expression. In vitro, no correlation was found between reduction in platelet count and platelet-white blood cell aggregation. Phagocytosis of human carboxyfluorescein diacetate succinimidyl ester-labeled platelets by PAEC/PFAEC/PLSEC peaked at 15 minutes and was inhibited (P < 0.05 to P < 0.0001) by rabbit anti-ASGR1 antibody and asialofetuin. CONCLUSIONS The ASGR1 expressed on aortic and limb arterial pig vascular endothelium plays a role in binding and phagocytosis of human platelets. Therefore, ASGR1 may represent a novel therapeutic target to overcome thrombocytopenia associated with vascularized pig-to-primate xenotransplantation.