419 resultados para VERTICES
Resumo:
An upper bound for the sum of the squares of the entries of the principal eigenvector corresponding to a vertex subset inducing a k-regular subgraph is introduced and applied to the determination of an upper bound on the order of such induced subgraphs. Furthermore, for some connected graphs we establish a lower bound for the sum of squares of the entries of the principal eigenvector corresponding to the vertices of an independent set. Moreover, a spectral characterization of families of split graphs, involving its index and the entries of the principal eigenvector corresponding to the vertices of the maximum independent set is given. In particular, the complete split graph case is highlighted.
Resumo:
A graph is singular if the zero eigenvalue is in the spectrum of its 0-1 adjacency matrix A. If an eigenvector belonging to the zero eigenspace of A has no zero entries, then the singular graph is said to be a core graph. A ( k,t)-regular set is a subset of the vertices inducing a k -regular subgraph such that every vertex not in the subset has t neighbours in it. We consider the case when k=t which relates to the eigenvalue zero under certain conditions. We show that if a regular graph has a ( k,k )-regular set, then it is a core graph. By considering the walk matrix we develop an algorithm to extract ( k,k )-regular sets and formulate a necessary and sufficient condition for a graph to be Hamiltonian.
Resumo:
Let G be a finite graph with an eigenvalue μ of multiplicity m. A set X of m vertices in G is called a star set for μ in G if μ is not an eigenvalue of the star complement G\X which is the subgraph of G induced by vertices not in X. A vertex subset of a graph is (k ,t)-regular if it induces a k -regular subgraph and every vertex not in the subset has t neighbors in it. We investigate the graphs having a (k,t)-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.
Resumo:
Let p(G)p(G) and q(G)q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m_L±(G)(1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that mL±(G)(1) is bounded below by p(G)−q(G). Let r(G) be the number of internal vertices of G. If r(G)=q(G), following a unified approach we prove that mL±(G)(1)=p(G)−q(G). If r(G)>q(G) then we determine the equality mL±(G)(1)=p(G)−q(G)+mN±(1), where mN±(1) denotes the multiplicity of 1 as eigenvalue of a matrix N±. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are non-quasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs.
Resumo:
Dissertação de Mestrado em Engenharia de Redes de Comunicação e Multimédia
Resumo:
The problem addressed here originates in the industry of flat glass cutting and wood panel sawing, where smaller items are cut from larger items accordingly to predefined cutting patterns. In this type of industry the smaller pieces that are cut from the patterns are piled around the machine in stacks according to the size of the pieces, which are moved to the warehouse only when all items of the same size have been cut. If the cutting machine can process only one pattern at a time, and the workspace is limited, it is desirable to set the sequence in which the cutting patterns are processed in a way to minimize the maximum number of open stacks around the machine. This problem is known in literature as the minimization of open stacks (MOSP). To find the best sequence of the cutting patterns, we propose an integer programming model, based on interval graphs, that searches for an appropriate edge completion of the given graph of the problem, while defining a suitable coloring of its vertices.
Resumo:
Abstract: Root and root finding are concepts familiar to most branches of mathematics. In graph theory, H is a square root of G and G is the square of H if two vertices x,y have an edge in G if and only if x,y are of distance at most two in H. Graph square is a basic operation with a number of results about its properties in the literature. We study the characterization and recognition problems of graph powers. There are algorithmic and computational approaches to answer the decision problem of whether a given graph is a certain power of any graph. There are polynomial time algorithms to solve this problem for square of graphs with girth at least six while the NP-completeness is proven for square of graphs with girth at most four. The girth-parameterized problem of root fining has been open in the case of square of graphs with girth five. We settle the conjecture that recognition of square of graphs with girth 5 is NP-complete. This result is providing the complete dichotomy theorem for square root finding problem.
Resumo:
We associate some graphs to a ring R and we investigate the interplay between the ring-theoretic properties of R and the graph-theoretic properties of the graphs associated to R. Let Z(R) be the set of zero-divisors of R. We define an undirected graph ᴦ(R) with nonzero zero-divisors as vertices and distinct vertices x and y are adjacent if xy=0 or yx=0. We investigate the Isomorphism Problem for zero-divisor graphs of group rings RG. Let Sk denote the sphere with k handles, where k is a non-negative integer, that is, Sk is an oriented surface of genus k. The genus of a graph is the minimal integer n such that the graph can be embedded in Sn. The annihilating-ideal graph of R is defined as the graph AG(R) with the set of ideals with nonzero annihilators as vertex such that two distinct vertices I and J are adjacent if IJ=(0). We characterize Artinian rings whose annihilating-ideal graphs have finite genus. Finally, we extend the definition of the annihilating-ideal graph to non-commutative rings.
Resumo:
Complex networks have recently attracted a significant amount of research attention due to their ability to model real world phenomena. One important problem often encountered is to limit diffusive processes spread over the network, for example mitigating pandemic disease or computer virus spread. A number of problem formulations have been proposed that aim to solve such problems based on desired network characteristics, such as maintaining the largest network component after node removal. The recently formulated critical node detection problem aims to remove a small subset of vertices from the network such that the residual network has minimum pairwise connectivity. Unfortunately, the problem is NP-hard and also the number of constraints is cubic in number of vertices, making very large scale problems impossible to solve with traditional mathematical programming techniques. Even many approximation algorithm strategies such as dynamic programming, evolutionary algorithms, etc. all are unusable for networks that contain thousands to millions of vertices. A computationally efficient and simple approach is required in such circumstances, but none currently exist. In this thesis, such an algorithm is proposed. The methodology is based on a depth-first search traversal of the network, and a specially designed ranking function that considers information local to each vertex. Due to the variety of network structures, a number of characteristics must be taken into consideration and combined into a single rank that measures the utility of removing each vertex. Since removing a vertex in sequential fashion impacts the network structure, an efficient post-processing algorithm is also proposed to quickly re-rank vertices. Experiments on a range of common complex network models with varying number of vertices are considered, in addition to real world networks. The proposed algorithm, DFSH, is shown to be highly competitive and often outperforms existing strategies such as Google PageRank for minimizing pairwise connectivity.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Resumo:
The employment of the bridging/chelating Schiff bases, N-salicylidene-4-methyl-o-aminophenol (samphH2) and N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in nickel cluster chemistry has afforded eight polynuclear Ni(II) complexes with new structural motifs, interesting magnetic and optical properties, and unexpected organic ligand transformations. In the present thesis, Chapter 1 deals with all the fundamental aspects of polynuclear metal complexes, molecular magnetism and optics, while research results are reported in Chapters 2 and 3. In the first project (Chapter 2), I investigated the coordination chemistry of the organic chelating/bridging ligand, N-salicylidene-4-methyl-o-aminophenol (samphH2). The general NiII/tBuCO2-/samphH2 reaction system afforded two new tetranuclear NiII clusters, namely [Ni4(samph)4(EtOH)4] (1) and [Ni4(samph)4(DMF)2] (2), with different structural motifs. Complex 1 possessed a cubane core while in complex 2 the four NiII ions were located at the four vertices of a defective dicubane. The nature of the organic solvent was found to be of pivotal importance, leading to compounds with the same nuclearity, but different structural topologies and magnetic properties. The second project, the results of which are summarized in Chapter 3, included the systematic study of a new optically-active Schiff base ligand, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in NiII cluster chemistry. Various reactions between NiX2 (X- = inorganic anions) and nacbH2 were performed under basic conditions to yield six new polynuclear NiII complexes, namely (NHEt3)[Ni12(nacb)12(H2O)4](ClO4) (3), (NHEt3)2[Ni5(nacb)4(L)(LH)2(MeOH)] (4), [Ni5(OH)2(nacb)4(DMF)4] (5), [Ni5(OMe)Cl(nacb)4(MeOH)3(MeCN)] (6), (NHEt3)2[Ni6(OH)2(nacb)6(H2O)4] (7), and [Ni6(nacb)6(H2O)3(MeOH)6] (8). The nature of the solvent, the inorganic anion, X-, and the organic base were all found to be of critical importance, leading to products with different structural topologies and nuclearities (i.e., {Ni5}, {Ni6} and {Ni12}). Magnetic studies on all synthesized complexes revealed an overall ferromagnetic behavior for complexes 4 and 8, with the remaining complexes being dominated by antiferromagnetic exchange interactions. In order to assess the optical efficiency of the organic ligand when bound to the metal centers, photoluminescence studies were performed on all synthesized compounds. Complexes 4 and 5 show strong emission in the visible region of the electromagnetic spectrum. Finally, the ligand nacbH2 allowed for some unexpected organic transformations to occur; for instance, the pentanuclear compound 5 comprises both nacb2- groups and a new organic chelate, namely the anion of 5-chloro-2-[(3-hydroxy-4-oxo-1,4-dihydronaphthalen-1-yl)amino]benzoic acid. In the last section of this thesis, an attempt to compare the NiII cluster chemistry of the N-naphthalidene-2-amino-5-chlorobenzoic acid ligand with that of the structurally similar but less bulky, N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2), was made.
Resumo:
We study the implications of two solidarity conditions on the efficient location of a public good on a cycle, when agents have single-peaked, symmetric preferences. Both conditions require that when circumstances change, the agents not responsible for the change should all be affected in the same direction: either they all gain or they all loose. The first condition, population-monotonicity, applies to arrival or departure of one agent. The second, replacement-domination, applies to changes in the preferences of one agent. Unfortunately, no Pareto-efficient solution satisfies any of these properties. However, if agents’ preferred points are restricted to the vertices of a small regular polygon inscribed in the circle, solutions exist. We characterize them as a class of efficient priority rules.
Resumo:
Généralement, les problèmes de conception de réseaux consistent à sélectionner les arcs et les sommets d’un graphe G de sorte que la fonction coût est optimisée et l’ensemble de contraintes impliquant les liens et les sommets dans G sont respectées. Une modification dans le critère d’optimisation et/ou dans l’ensemble de contraintes mène à une nouvelle représentation d’un problème différent. Dans cette thèse, nous nous intéressons au problème de conception d’infrastructure de réseaux maillés sans fil (WMN- Wireless Mesh Network en Anglais) où nous montrons que la conception de tels réseaux se transforme d’un problème d’optimisation standard (la fonction coût est optimisée) à un problème d’optimisation à plusieurs objectifs, pour tenir en compte de nombreux aspects, souvent contradictoires, mais néanmoins incontournables dans la réalité. Cette thèse, composée de trois volets, propose de nouveaux modèles et algorithmes pour la conception de WMNs où rien n’est connu à l’ avance. Le premiervolet est consacré à l’optimisation simultanée de deux objectifs équitablement importants : le coût et la performance du réseau en termes de débit. Trois modèles bi-objectifs qui se différent principalement par l’approche utilisée pour maximiser la performance du réseau sont proposés, résolus et comparés. Le deuxième volet traite le problème de placement de passerelles vu son impact sur la performance et l’extensibilité du réseau. La notion de contraintes de sauts (hop constraints) est introduite dans la conception du réseau pour limiter le délai de transmission. Un nouvel algorithme basé sur une approche de groupage est proposé afin de trouver les positions stratégiques des passerelles qui favorisent l’extensibilité du réseau et augmentent sa performance sans augmenter considérablement le coût total de son installation. Le dernier volet adresse le problème de fiabilité du réseau dans la présence de pannes simples. Prévoir l’installation des composants redondants lors de la phase de conception peut garantir des communications fiables, mais au détriment du coût et de la performance du réseau. Un nouvel algorithme, basé sur l’approche théorique de décomposition en oreilles afin d’installer le minimum nombre de routeurs additionnels pour tolérer les pannes simples, est développé. Afin de résoudre les modèles proposés pour des réseaux de taille réelle, un algorithme évolutionnaire (méta-heuristique), inspiré de la nature, est développé. Finalement, les méthodes et modèles proposés on été évalués par des simulations empiriques et d’événements discrets.
Resumo:
La méthode de subdivision Catmull-Clark ainsi que la méthode de subdivision Loop sont des normes industrielle de facto. D'autre part, la méthode de subdivision 4-8 est bien adaptée à la subdivision adaptative, parce que cette méthode augmente le nombre de faces ou de sommets par seulement un facteur de 2 à chaque raffinement. Cela promet d'être plus pratique pour atteindre un niveau donné de précision. Dans ce mémoire, nous présenterons une méthode permettant de paramétrer des surfaces de subdivision de la méthode Catmull-Clark et de la méthode 4-8. Par conséquent, de nombreux algorithmes mis au point pour des surfaces paramétriques pourrant être appliqués aux surfaces de subdivision Catmull-Clark et aux surfaces de subdivision 4-8. En particulier, nous pouvons calculer des bornes garanties et réalistes sur les patches, un peu comme les bornes correspondantes données par Wu-Peters pour la méthode de subdivision Loop.
Resumo:
Soit G = (V, E) un graphe simple fini. Soit (a, b) un couple d’entiers positifs. On note par τ(G) le nombre de sommets d’un chemin d’ordre maximum dans G. Une partition (A,B) de V(G) est une (a,b)−partition si τ(⟨A⟩) ≤ a et τ(⟨B⟩) ≤ b. Si G possède une (a, b)−partition pour tout couple d’entiers positifs satisfaisant τ(G) = a+b, on dit que G est τ−partitionnable. La conjecture de partitionnement des chemins, connue sous le nom anglais de Path Partition Conjecture, cherche à établir que tout graphe est τ−partitionnable. Elle a été énoncée par Lovász et Mihók en 1981 et depuis, de nombreux chercheurs ont tenté de démontrer cette conjecture et plusieurs y sont parvenus pour certaines classes de graphes. Le présent mémoire rend compte du statut de la conjecture, en ce qui concerne les graphes non-orientés et ceux orientés.