944 resultados para VACCINE CANDIDATE
Resumo:
Streptococcus pyogenes infections remain a health problem in several countries due to poststreptococcal sequelae. We developed a vaccine epitope (StreptInCor) composed of 55 amino acids residues of the C-terminal portion of the M protein that encompasses both T and B cell protective epitopes. The nuclear magnetic resonance (NMR) structure of the StreptInCor peptide showed that the structure was composed of two microdomains linked by an 18-residue alpha-helix. A chemical stability study of the StreptInCor folding/unfolding process using far-UV circular dichroism showed that the structure was chemically stable with respect to pH and the concentration of urea. The T cell epitope is located in the first microdomain and encompasses 11 out of the 18 alpha-helix residues, whereas the B cell epitope is in the second microdomain and showed no alpha-helical structure. The prediction of StreptInCor epitope binding to different HLA class II molecules was evaluated based on an analysis of the 55 residues and the theoretical possibilities for the processed peptides to fit into the P1, P4, P6, and P9 pockets in the groove of several HLA class II molecules. We observed 7 potential sites along the amino acid sequence of StreptInCor that were capable of recognizing HLA class II molecules (DRB1*, DRB3*, DRB4*, and DRB5*). StreptInCoroverlapping peptides induced cellular and humoral immune responses of individuals bearing different HLA class II molecules and could be considered as a universal vaccine epitope.
Resumo:
In this paper we describe the assembly and restriction map of a 1.05-Mb cosmid contig spanning the candidate region for familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation localized to 16p13.3. Using a combination of cosmid walking and screening for P1, PAC, BAG, and YAC clones, we have generated a contig of genomic clones spanning similar to 1050 kb that contains the FMF critical region. The map consists of 179 cosmid, 15 P1, 10 PAC, 3 BAG, and 17 YAC clones, anchored by 27 STS markers. Eight additional STSs have been developed from the similar to 700 kb immediately centromeric to this genomic region. Five of the 35 STSs are microsatellites that have not been previously reported. NotI and EcoRI mapping of the overlapping cosmids, hybridization of restriction fragments from cosmids to one another, and STS analyses have been used to validate the assembly of the contig. Our contig totally subsumes the 250-kb interval recently reported, by founder haplotype analysis, to contain the FMF gene. Thus, our high-resolution clone map provides an ideal resource for transcriptional mapping toward the eventual identification of this disease gene. (C) 1997 Academic Press.
Resumo:
Familial Mediterranean fever (FMF) is a recessive disorder of inflammation caused by mutations in a gene (designated MEFV) on chromosome 16p13.3, We have recently constructed a 1-Mb cosmid contig that includes the FMF critical region. Here we show genotype data for 12 markers from our physical map, including 5 newly identified microsatellites, in FMF families. Intrafamilial recombinations placed MEFV in the similar to 285 kb between D16S468/D16S3070 and D16S3376. We observed significant linkage disequilibrium in the North African Jewish population, and historical recombinants in the founder haplotype placed MEFV between D16S3082 and D16S3373 (similar to 200 kb). In smaller panels of Iraqi Jewish, Arab, and Armenian families, there were significant allelic associations only for D16S3370 and D16S2617 among the Armenians. A sizable minority of Iraqi Jewish and Armenian carrier chromosomes appeared to be derived from the North African Jewish ancestral haplotype. We observed a unique FMF haplotype common to Iraqi Jews, Arabs, and Armenians and two other haplotypes restricted to either the Iraqi Jewish or the Armenian population. These data support the view that a few major mutations account for a large percentage of the cases of FMF and suggest that same of these mutations arose before the affected Middle Eastern populations diverged from one another. (C) 1997 Academic Press.
Resumo:
Because of the advent of a new influenza A H1N1. strain, many countries have begun mass immunisation programmes. Awareness of the background rates of possible adverse events will be a crucial part of assessment of possible vaccine safety concerns and will help to separate legitimate safety concerns from events that are temporally associated with but not caused by vaccination. We identified background rates of selected medical events for several countries. Rates of disease events varied by age, sex, method of ascertainment, and geography. Highly visible health conditions, such as Guillain-Barre syndrome, spontaneous abortion, or even death, will occur in coincident temporal association with novel influenza vaccination. On the basis of the reviewed data, if a cohort of 10 million individuals was vaccinated in the UK, 21.5 cases of Guillain-Barre syndrome and 5.75 cases of sudden death would be expected to occur within 6 weeks of vaccination as coincident background cases. In female vaccinees in the USA, 86.3 cases of optic neuritis per 10 million population would be expected within 6 weeks of vaccination. 397 per 1 million vaccinated pregnant women would be predicted to have a spontaneous abortion within 1 day of vaccination.
Resumo:
Whether gestational immunization of HIV-infected mothers with the 23-valent pneumococcal polysaccharide vaccine (PPV) confers maternal and infant early life, passive protection is not known. We evaluated safety, immunogenicity and placental transfer of antibodies in 44 HIV-infected women. Pneumococcal IgG antibodies against serotypes 1, 3, 5, 613, 9V, and 14 were measured in mothers (pre-vaccination and at delivery), and infants (at birth, 1, 2, 3, and 6 months). PPV was safe and immunogenic in mothers. Newborns received 46-72% of maternal antibody titers. Overall, infants had antibody levels lower than protective by 2 months of age. Alternative pneumococcal vaccination of HIV-infected pregnant women should be explored with the aim of prolonging passive protection in their infants. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pneumococcal vaccination has been recommended for immunocompromised children, including patients with chronic kidney disease. We determined pneumococcal immunoglobulin (Ig) G antibodies to serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F before and after 48 pediatric patients with chronic renal failure were administered heptavalent conjugated pneumococcal vaccine. The patients were between 1 and 9 years of age and were separated into a conservative treatment group (Group 1) and a dialysis group Group 2). The antibody response to the vaccinal serotypes was evaluated by measuring antibody concentrations before the first dose and 60 days after the second one. Pre-vaccinal IgG concentrations >= 0.35 mu g/ml were detected for all serotypes in at least 50% of the patients in both groups. Patients from both groups showed a statistically indistinguishable behavior in terms of the medians of post-vaccination IgG levels. An ""adequate"" vaccine response was defined as a post-immunization level of specific pneumococcal serotype antibody >= 0.35 mu g/ml, based on the World Health Organization`s (WHO) protective antibody concentration definition for pneumococcal conjugate vaccines, or on a fourfold increase over baseline for at least five of the seven antigens of the vaccine. An ""adequate"" vaccinal response was obtained in 100% of the patients of both groups using WHO`s definition, or in 45.8% of Group 1 patients and 37.5% of Group 2 patients when the criterion was a fourfold antibody increase over baseline antibody concentrations.
Resumo:
We propose a mathematical model to simulate the dynamics of hepatitis C virus (HCV) infection in the state of Sao Paulo, Brazil. We assumed that a hypothetical vaccine, which cost was taken to be the initial cost of the vaccine against hepatitis B exists and it is introduced in the model. We computed its cost-effectiveness compared with the anti-HCV therapy. The calculated basic reproduction number was 1.20. The model predicts that without intervention a steady state exists with an HCV prevalence of 3%, in agreement with the Current epidemiological data. Starting from this steady state three interventions were simulated: indiscriminate vaccination, selective vaccination and anti-HCV therapy. Selective vaccination proved to be the strategy with the best cost-effectiveness ratio, followed by indiscriminate vaccination and anti-HCV therapy.
Resumo:
Vaccines capable of inducing mucosal immunity in early postnatal life until adulthood, protecting early sexual initiation, should be considered as strategies to vaccination against HIV. The HIV-1 GAG protein as a chimera with the lysosome-associated membrane protein (LAMP/gag), encoded by a DNA vaccine, is targeted to the endosomal/lysosomal compartment that contains class II MHC molecules and has been shown to be immunogenic in adult mice. Assuming that one such strategy could help to overcome the immunological immaturity in the early postnatal period, we have evaluated the systemic and mucosal immunogenicity of LAMP/gag immunization in neonatal mice. Intranasal immunization with LAMP/gag vaccine induced higher levels of sIgA and IgG anti-GAG antibodies in intestinal washes than did the gag vaccine. The combination of ID injections and the IN protocol with the chimeric vaccine promoted the increase of Ab levels in sera. Both vaccines induced splenic IFN-gamma- secreting cells against GAG peptide pools, as well as in vivo cytotoxic T lymphocyte (CTL) function, and increased the percentage of CD8+ T cells to the immunodominant class I peptide in gut and spleen. However, only the chimeric vaccine was able to enhance Th1/Th2 cytokine secretion in response to class II GAG peptide and to enhance IL-4-secreting cells against GAG peptides and p24 protein stimuli. Long-lasting humoral and cellular responses were detected until adult age, following neonatal immunization with the chimeric vaccine. The LAMP/gag vaccination was able to induce potent GAG-specific T and B cell immune responses in early life which are essential to elicit sustained and long-lasting mucosal and systemic humoral response. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
The immunogenicity and tolerability of virosome and of split influenza vaccines in patients with sickle cell anemia (SS) were evaluated Ninety SS patients from 8 to 34 years old were randomly assigned to receive either virosome (n = 43) or split vaccine (n = 47) Two blood samples were collected, one before and one 4-6 weeks after vaccination Antibodies against viral strains (2006) A/New Caledonia (H1N1), A/California (H3N2), B/Malaysia were determined using the hemagglutinin inhibition test Post-vaccine reactions were recorded over 7 days Seroconversion rates for HI NI, H3N2 and B were 65 1%. 60 4% and 83 7% for virosome vaccine, and 68 0%, 61 7% and 68 0% for split vaccine Seroprotection rates for HI NI, H3N2 e B were 100%. 97 6% and 69.7% for virosome. and 97 8%, 97 8% and 76 6% for split vaccine No severe adverse reactions were recorded Virosome and split vaccines in patients with sickle cell anemia were equally Immunogenic. with high seroconversion and seroprotection rates Both vaccines were well tolerated (C) 2009 Elsevier Ltd All rights reserved
Resumo:
Group C rotavirus (GpCRV) has a worldwide distribution; however, its epidemiology and ecology are still unclear. Evidence for a possible zoonotic role has been postulated recently for Brazilian children strains. The aim of this study was to monitor GpCRV in children <= 15 years with acute gastroenteritis during the 2007-2010 national Brazilian rotavirus surveillance, and to undertake the molecular characterization of the major VP6 capsid protein. A total of 3,019 fecal samples were first screened for Group A rotavirus (GpARV). A total of 2,205 GpARV ELISA negative samples were tested further for the presence of GpCRV by SDS-PAGE, electronic microscopy, and RT-PCR for the VP6 gene. The genetic diversity of GpCRV was carried out by sequencing the VP6 gene. GpARV and GpCRV infections were detected in 24.6% (742/3,019) and 0.3% (8/3,019), respectively. The GpCRV detection rate increased from 0.2% (1/422) in 2007 to 1% (7/708) in 2008, and GpCRV cases were not detected in 2009 and 2010. The phylogenetic analysis indicated that the strains belonged to the human lineage, and showed a genetic relationship with the GpCRV strain from Japan isolated in 2009. None of the study sequences was related closely to animal GpCRV strains. This study provides further evidence that GpCRV is a minor cause of acute childhood gastroenteritis in Brazil, and does not suggest that GpCRV may assume epidemiological importance in the future, even after the introduction of a GpARV vaccine. In addition, the molecular analyses of the GpCRV samples in this study do not support the zoonotic hypothesis. J. Med. Virol. 83: 1631-1636, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Substantial experimental evidence indicates that PAWR gene (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) is a central player in cancer cell survival and a potential target for cancer-selective targeted therapeutics. However, little is known about the role of PAR-4 in breast cancer. We investigated the possible role of PAR-4 expression in breast cancer. IHC results on tissue microarrays containing 1,161 primary breast tumor samples showed that 57% (571/995) of analyzable cases were negative for PAR-4 nuclear staining. Down-regulation of nuclear PAR-4 protein expression predicted a poor prognosis for breast cancer patients (OS; P=0.041, log-rank test). PAR-4 down-regulation also correlates with poor survival in the group of patients with luminal A subtype breast cancer (P=0.028). Additionally, in this large series of breast cancer patients, we show that ERBB2/HER2, EGFR and pAKT protein expression are significantly associated with shorter disease-free survival and overall survival, but the prognosis was even worse for HER2-positive, EGFR-positive or pAKT-positive breast cancer patients with tumors negative for nuclear PAR-4 expression. Furthermore, using three-dimensional (3D) cell culture we provide preliminary results showing that PAR-4 is highly expressed in the MCF10A cells inside the acini structure, suggesting that PAR-4 might have a role in the lumen acini formation. Taken together, our results provide, for the first time, evidence that PAR-4 may have a role in the process of the mammary eland morphogenesis and its functional inactivation is associated with tumor aggressive phenotype and might represent an additional prognostic and predictive marker for breast cancer.
Resumo:
Posttraumatic stress disorder (PTSD) is a prevalent, disabling anxiety disorder marked by behavioral and physiologic alterations which commonly follows a chronic course. Exposure to a traumatic event constitutes a necessary, but not sufficient, factor. There is evidence from twin studies supporting a significant genetic predisposition to PTSD. However, the precise genetic loci still remain unclear. The objective of the present study was to identify, in a case-control study, whether the brain-derived neurotrophic factor (BDNF) val66met polymorphism (rs6265), the dopamine transporter (DAT1) three prime untranslated region (3`UTR) variable number of tandem repeats (VNTR), and the serotonin transporter (5-HTTPRL) short/long variants are associated with the development of PTSD in a group of victims of urban violence. All polymorphisms were genotyped in 65 PTSD patients as well as in 34 victims of violence without PTSD and in a community control group (n = 335). We did not find a statistical significant difference between the BDNF val66met and 5-HTTPRL polymorphism and the traumatic phenotype. However, a statistical association was found between DAT1 3`UTR VNTR nine repeats and PTSD (OR = 1.82; 95% CI, 1.20-2.76). This preliminary result confirms previous reports supporting a susceptibility role for allele 9 and PTSD.
Resumo:
Of the hundreds of new tuberculosis ( TB) vaccine candidates some have therapeutic value in addition to their prophylactic properties. This is the case for the DNA vaccine encoding heat-shock protein 65 (DNAhsp65) from Mycobacterium leprae. However, there are concerns about the use of DNA vaccines in certain populations such as newborns and pregnant women. Thus, the optimization of vaccination strategies that circumvent this limitation is a priority. This study evaluated the efficacy of a single dose subunit vaccine based on recombinant Hsp65 protein against infection with M. tuberculosis H37Rv. The Hsp65 protein in this study was either associated or not with immunostimulants, and was encapsulated in biodegradable PLGA microspheres. Our results demonstrate that the protein was entrapped in microspheres of adequate diameter to be engulfed by phagocytes. Mice vaccinated with a single dose of Hsp65-microspheres or Hsp65 + CpG-microspheres developed both humoral and cellular-specific immune responses. However, they did not protect mice against challenge with M. tuberculosis. By contrast, Hsp65+KLK-microspheres induced specific immune responses that reduced bacilli loads and minimized lung parenchyma damage. These data suggest that a subunit vaccine based on recombinant protein Hsp65 is feasible.
Resumo:
Bordetella pertussis is a gram-negative bacillus that causes the highly contagious disease known as pertussis or whooping cough. Antibody response in children may vary depending on the vaccination schedule and the product used. In this study, we have analyzed the antibody response of cellular pertussis vaccinated children against B. pertussis strains and their virulence factors, such as pertussis toxin, pertactin, and filamentous hemagglutinin. After the completion of the immunization process, according to the Brazilian vaccination program, children serum samples were collected at different periods of time, and tested for the presence of specific antibodies and antigenic cross-reactivity. Results obtained show that children immunized with three doses of the Brazilian whole-cell pertussis vaccine present high levels of serum antibodies capable of recognizing the majority of the components present in vaccinal and non-vaccinal B. pertussis strains and their virulence factors for at least 2 years after the completion of the immunization procedure.