924 resultados para User Evaluation
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Ongoing advances in technology are increasing the scope for enhancing and supporting older adults’ daily living. The digital divide between older and younger adults raises concerns, however, about the suitability of technological solutions for older adults, especially for those with impairments. Taking older adults with Age-Related Macular Degeneration (AMD) as a case study, we used user-centred and participatory design approaches to develop an assistive mobile app for self-monitoring their intake of food [12,13]. In this paper we report on findings of a longitudinal field evaluation of our app that was conducted to investigate how it was received and adopted by older adults with AMD and its impact on their lives. Demonstrating the benefit of applying inclusive design methods for technology for older adults, our findings reveal how the use of the app raises participants’ awareness and facilitates self-monitoring of diet, encourages positive (diet) behaviour change, and encourages learning.
Resumo:
Starting from the Schumpeterian producer-driven understanding of innovation, followed by user-generated solutions and understanding of collaborative forms of co-creation, scholars investigated the drivers and the nature of interactions underpinning success in various ways. Innovation literature has gone a long way, where open innovation has attracted researchers to investigate problems like compatibilities of external resources, networks of innovation, or open source collaboration. Openness itself has gained various shades in the different strands of literature. In this paper the author provides with an overview and a draft evaluation of the different models of open innovation, illustrated with some empirical findings from various fields drawn from the literature. She points to the relevance of transaction costs affecting viable forms of (open) innovation strategies of firms, and the importance to define the locus of innovation for further analyses of different firm and interaction level formations.
Resumo:
The convergence of data, audio and video on IP networks is changing the way individuals, groups and organizations communicate. This diversity of communication media presents opportunities for creating synergistic collaborative communications. This form of collaborative communication is however not without its challenges. The increasing number of communication service providers coupled with a combinatorial mix of offered services, varying Quality-of-Service and oscillating pricing of services increases the complexity for the user to manage and maintain ‘always best’ priced or performance services. Consumers have to manually manage and adapt their communication in line with differences in services across devices, networks and media while ensuring that the usage remain consistent with their intended goals. This dissertation proposes a novel user-centric approach to address this problem. The proposed approach aims to reduce the aforementioned complexity to the user by (1) providing high-level abstractions and a policy based methodology for automated selection of the communication services guided by high-level user policies and (2) providing services through the seamless integration of multiple communication service providers and providing an extensible framework to support the integration of multiple communication service providers. The approach was implemented in the Communication Virtual Machine (CVM), a model-driven technology for realizing communication applications. The CVM includes the Network Communication Broker, the layer responsible for providing a network-independent API to the upper layers of CVM. The initial prototype for the NCB supported only a single communication framework which limited the number, quality and types of services available. Experimental evaluation of the approach show the additional overhead of the approach is minimal compared to the individual communication services frameworks. Additionally the automated approach proposed out performed the individual communication services frameworks for cross framework switching.
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. ^ In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment ("relaxation" vs. "stress") are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. ^ For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). ^ In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the "relaxation" vs. "stress" states.^
Resumo:
Voice communication systems such as Voice-over IP (VoIP), Public Switched Telephone Networks, and Mobile Telephone Networks, are an integral means of human tele-interaction. These systems pose distinctive challenges due to their unique characteristics such as low volume, burstiness and stringent delay/loss requirements across heterogeneous underlying network technologies. Effective quality evaluation methodologies are important for system development and refinement, particularly by adopting user feedback based measurement. Presently, most of the evaluation models are system-centric (Quality of Service or QoS-based), which questioned us to explore a user-centric (Quality of Experience or QoE-based) approach as a step towards the human-centric paradigm of system design. We research an affect-based QoE evaluation framework which attempts to capture users' perception while they are engaged in voice communication. Our modular approach consists of feature extraction from multiple information sources including various affective cues and different classification procedures such as Support Vector Machines (SVM) and k-Nearest Neighbor (kNN). The experimental study is illustrated in depth with detailed analysis of results. The evidences collected provide the potential feasibility of our approach for QoE evaluation and suggest the consideration of human affective attributes in modeling user experience.
Resumo:
Mobile Cloud Computing promises to overcome the physical limitations of mobile devices by executing demanding mobile applications on cloud infrastructure. In practice, implementing this paradigm is difficult; network disconnection often occurs, bandwidth may be limited, and a large power draw is required from the battery, resulting in a poor user experience. This thesis presents a mobile cloud middleware solution, Context Aware Mobile Cloud Services (CAMCS), which provides cloudbased services to mobile devices, in a disconnected fashion. An integrated user experience is delivered by designing for anticipated network disconnection, and low data transfer requirements. CAMCS achieves this by means of the Cloud Personal Assistant (CPA); each user of CAMCS is assigned their own CPA, which can complete user-assigned tasks, received as descriptions from the mobile device, by using existing cloud services. Service execution is personalised to the user's situation with contextual data, and task execution results are stored with the CPA until the user can connect with his/her mobile device to obtain the results. Requirements for an integrated user experience are outlined, along with the design and implementation of CAMCS. The operation of CAMCS and CPAs with cloud-based services is presented, specifically in terms of service description, discovery, and task execution. The use of contextual awareness to personalise service discovery and service consumption to the user's situation is also presented. Resource management by CAMCS is also studied, and compared with existing solutions. Additional application models that can be provided by CAMCS are also presented. Evaluation is performed with CAMCS deployed on the Amazon EC2 cloud. The resource usage of the CAMCS Client, running on Android-based mobile devices, is also evaluated. A user study with volunteers using CAMCS on their own mobile devices is also presented. Results show that CAMCS meets the requirements outlined for an integrated user experience.
Resumo:
The paper addresses issues related to the design of a graphical query mechanism that can act as an interface to any object-oriented database system (OODBS), in general, and the object model of ODMG 2.0, in particular. In the paper a brief literature survey of related work is given, and an analysis methodology that allows the evaluation of such languages is proposed. Moreover, the user's view level of a new graphical query language, namely GOQL (Graphical Object Query Language), for ODMG 2.0 is presented. The user's view level provides a graphical schema that does not contain any of the perplexing details of an object-oriented database schema, and it also provides a foundation for a graphical interface that can support ad-hoc queries for object-oriented database applications. We illustrate, using an example, the user's view level of GOQL
Resumo:
The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort.
Resumo:
Aim. The purpose of this study was to develop and evaluate a computer-based, dietary, and physical activity self-management program for people recently diagnosed with type 2 diabetes.
Methods. The computer-based program was developed in conjunction with the target group and evaluated in a 12-week randomised controlled trial (RCT). Participants were randomised to the intervention (computer-program) or control group (usual care). Primary outcomes were diabetes knowledge and goal setting (ADKnowl questionnaire, Diabetes Obstacles Questionnaire (DOQ)) measured at baseline and week 12. User feedback on the program was obtained via a questionnaire and focus groups. Results. Seventy participants completed the 12-week RCT (32 intervention, 38 control, mean age 59 (SD) years). After completion there was a significant between-group difference in the “knowledge and beliefs scale” of the DOQ. Two-thirds of the intervention group rated the program as either good or very good, 92% would recommend the program to others, and 96% agreed that the information within the program was clear and easy to understand.
Conclusions. The computer-program resulted in a small but statistically significant improvement in diet-related knowledge and user satisfaction was high. With some further development, this computer-based educational tool may be a useful adjunct to diabetes self-management.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
The problem: Around 300 million people worldwide have asthma and prevalence is increasing. Support for optimal self-management can be effective in improving a range of outcomes and is cost effective, but is underutilised as a treatment strategy. Supporting optimum self-management using digital technology shows promise, but how best to do this is not clear. Aim: The purpose of this project was to explore the potential role of a digital intervention in promoting optimum self-management in adults with asthma. Methods: Following the MRC Guidance on the Development and Evaluation of Complex Interventions which advocates using theory, evidence, user testing and appropriate modelling and piloting, this project had 3 phases. Phase 1: Examination of the literature to inform phases 2 and 3, using systematic review methods and focussed literature searching. Phase 2: Developing the Living Well with Asthma website. A prototype (paper-based) version of the website was developed iteratively with input from a multidisciplinary expert panel, empirical evidence from the literature (from phase 1), and potential end users via focus groups (adults with asthma and practice nurses). Implementation and behaviour change theories informed this process. The paper-based designs were converted to the website through an iterative user centred process (think aloud studies with adults with asthma). Participants considered contents, layout, and navigation. Development was agile using feedback from the think aloud sessions immediately to inform design and subsequent think aloud sessions. Phase 3: A pilot randomised controlled trial over 12 weeks to evaluate the feasibility of a Phase 3 trial of Living Well with Asthma to support self-management. Primary outcomes were 1) recruitment & retention; 2) website use; 3) Asthma Control Questionnaire (ACQ) score change from baseline; 4) Mini Asthma Quality of Life (AQLQ) score change from baseline. Secondary outcomes were patient activation, adherence, lung function, fractional exhaled nitric oxide (FeNO), generic quality of life measure (EQ-5D), medication use, prescribing and health services contacts. Results: Phase1: Demonstrated that while digital interventions show promise, with some evidence of effectiveness in certain outcomes, participants were poorly characterised, telling us little about the reach of these interventions. The interventions themselves were poorly described making drawing definitive conclusions about what worked and what did not impossible. Phase 2: The literature indicated that important aspects to cover in any self-management intervention (digital or not) included: asthma action plans, regular health professional review, trigger avoidance, psychological functioning, self-monitoring, inhaler technique, and goal setting. The website asked users to aim to be symptom free. Key behaviours targeted to achieve this include: optimising medication use (including inhaler technique); attending primary care asthma reviews; using asthma action plans; increasing physical activity levels; and stopping smoking. The website had 11 sections, plus email reminders, which promoted these behaviours. Feedback during think aloud studies was mainly positive with most changes focussing on clarification of language, order of pages and usability issues mainly relating to navigation difficulties. Phase 3: To achieve our recruitment target 5383 potential participants were invited, leading to 51 participants randomised (25 to intervention group). Age range 16-78 years; 75% female; 28% from most deprived quintile. Nineteen (76%) of the intervention group used the website for an average of 23 minutes. Non-significant improvements in favour of the intervention group observed in the ACQ score (-0.36; 95% confidence interval: -0.96, 0.23; p=0.225), and mini-AQLQ scores (0.38; -0.13, 0.89; p=0.136). A significant improvement was observed in the activity limitation domain of the mini-AQLQ (0.60; 0.05 to 1.15; p = 0.034). Secondary outcomes showed increased patient activation and reduced reliance on reliever medication. There was no significant difference in the remaining secondary outcomes. There were no adverse events. Conclusion: Living Well with Asthma has been shown to be acceptable to potential end users, and has potential for effectiveness. This intervention merits further development, and subsequent evaluation in a Phase III full scale RCT.
Resumo:
This thesis investigates how web search evaluation can be improved using historical interaction data. Modern search engines combine offline and online evaluation approaches in a sequence of steps that a tested change needs to pass through to be accepted as an improvement and subsequently deployed. We refer to such a sequence of steps as an evaluation pipeline. In this thesis, we consider the evaluation pipeline to contain three sequential steps: an offline evaluation step, an online evaluation scheduling step, and an online evaluation step. In this thesis we show that historical user interaction data can aid in improving the accuracy or efficiency of each of the steps of the web search evaluation pipeline. As a result of these improvements, the overall efficiency of the entire evaluation pipeline is increased. Firstly, we investigate how user interaction data can be used to build accurate offline evaluation methods for query auto-completion mechanisms. We propose a family of offline evaluation metrics for query auto-completion that represents the effort the user has to spend in order to submit their query. The parameters of our proposed metrics are trained against a set of user interactions recorded in the search engine’s query logs. From our experimental study, we observe that our proposed metrics are significantly more correlated with an online user satisfaction indicator than the metrics proposed in the existing literature. Hence, fewer changes will pass the offline evaluation step to be rejected after the online evaluation step. As a result, this would allow us to achieve a higher efficiency of the entire evaluation pipeline. Secondly, we state the problem of the optimised scheduling of online experiments. We tackle this problem by considering a greedy scheduler that prioritises the evaluation queue according to the predicted likelihood of success of a particular experiment. This predictor is trained on a set of online experiments, and uses a diverse set of features to represent an online experiment. Our study demonstrates that a higher number of successful experiments per unit of time can be achieved by deploying such a scheduler on the second step of the evaluation pipeline. Consequently, we argue that the efficiency of the evaluation pipeline can be increased. Next, to improve the efficiency of the online evaluation step, we propose the Generalised Team Draft interleaving framework. Generalised Team Draft considers both the interleaving policy (how often a particular combination of results is shown) and click scoring (how important each click is) as parameters in a data-driven optimisation of the interleaving sensitivity. Further, Generalised Team Draft is applicable beyond domains with a list-based representation of results, i.e. in domains with a grid-based representation, such as image search. Our study using datasets of interleaving experiments performed both in document and image search domains demonstrates that Generalised Team Draft achieves the highest sensitivity. A higher sensitivity indicates that the interleaving experiments can be deployed for a shorter period of time or use a smaller sample of users. Importantly, Generalised Team Draft optimises the interleaving parameters w.r.t. historical interaction data recorded in the interleaving experiments. Finally, we propose to apply the sequential testing methods to reduce the mean deployment time for the interleaving experiments. We adapt two sequential tests for the interleaving experimentation. We demonstrate that one can achieve a significant decrease in experiment duration by using such sequential testing methods. The highest efficiency is achieved by the sequential tests that adjust their stopping thresholds using historical interaction data recorded in diagnostic experiments. Our further experimental study demonstrates that cumulative gains in the online experimentation efficiency can be achieved by combining the interleaving sensitivity optimisation approaches, including Generalised Team Draft, and the sequential testing approaches. Overall, the central contributions of this thesis are the proposed approaches to improve the accuracy or efficiency of the steps of the evaluation pipeline: the offline evaluation frameworks for the query auto-completion, an approach for the optimised scheduling of online experiments, a general framework for the efficient online interleaving evaluation, and a sequential testing approach for the online search evaluation. The experiments in this thesis are based on massive real-life datasets obtained from Yandex, a leading commercial search engine. These experiments demonstrate the potential of the proposed approaches to improve the efficiency of the evaluation pipeline.
Resumo:
Consumers currently enjoy a surplus of goods (books, videos, music, or other items) available to purchase. While this surplus often allows a consumer to find a product tailored to their preferences or needs, the volume of items available may require considerable time or effort on the part of the user to find the most relevant item. Recommendation systems have become a common part of many online business that supply users books, videos, music, or other items to consumers. These systems attempt to provide assistance to consumers in finding the items that fit their preferences. This report presents an overview of recommendation systems. We will also briefly explore the history of recommendation systems and the large boost that was given to research in this field due to the Netflix Challenge. The classical methods for collaborative recommendation systems are reviewed and implemented, and an examination is performed contrasting the complexity and performance among the various models. Finally, current challenges and approaches are discussed.
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment (“relaxation” vs. “stress”) are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the “relaxation” vs. “stress” states.