876 resultados para Urban system interactions, Micro-simulation, Neighbourhood scale, Population,Activities.
Resumo:
Between 2003 and 2007 an urban network or road tunnels with a total constructed tubes length of 45 km was built in the city of Madrid. This amazing engineering work, known as "Calle 30 Project" counted with different kinds of tunnel typologies and ventilation systems. Due to the length of the tunnels and the impact of the work itself, the tunnels were endowed with a great variety of installations to provide the maximum levels of safety both for users and the infrastructure includieng, in some parts of the tunnel, fixed fire fighting system based on water mist. Whithin this framework a large-scale programme of fire tests was planned to study different aspects related to fire safety in the tunnels including the phenomena of the interaction between ventilation and extinguishing system. In addition, these large scale fire tests allowed fire brigades of the city of Madrid an opportunity to define operational procedures for specific fire fighting in tunnels and evaluate the possibilities of fixed fire fighting systems. The tests were carried out in the Center of Experimentation "San pedro of Anes" which includes a 600 m tunnel with a removable false ceiling for reproducing different ceiling heights and ventilation conditions (transverse and longitudinal ones). Interesting conclusions on the interaction of ventilation and water mist systems were obtained but also on other aspects including performance of water mist system in terms of reduction of gas temperatures or visibility conditions. This paper presents a description of the test's programme carried out and some previous results obtained.
Resumo:
Una de las características definitorias del sistema urbano contemporáneo es su desterritorialización, es decir, su adopción de un modelo de desarrollo que se da al margen del territorio concreto que lo sustenta y de los recursos biofísicos y culturales existentes en él. Dicha desterritorialización es posible gracias al uso intensivo de energía que ha permitido ampliar hasta la escala global los flujos del metabolismo urbano. De este modo se han roto las relaciones de proximidad urbano-rurales, y se ha aumentado la dependencia de recursos externos. Entre las diferentes manifestaciones de esta desterritorialización se encuentra la organización del sistema alimentario, que en la actualidad responde a un modelo globalizado, en el que la distancia entre producción y consumo ha aumentado a costa de incrementar el gasto energético en transporte y conservación de alimentos. Este distanciamento físico va acompañado también de un distanciamiento social e identario, con la hegemonía de un modelo agroindustrial que no respeta los paisajes, las prácticas agrícolas, los conocimientos tradicionales ni las variedades genéticas locales. Tanto el modelo territorial como el alimentario son altamente vulnerables ante crisis externas que pueden alterar su funcionamiento. El enfoque (bio)regionalista desde el mismo inicio de la ciudad industrial hasta nuestros días ha propuesto un modelo de ordenación territorial alternativo, adaptado a las condiciones locales y basado en la proximidad, que dotaría al sistema territorial de mayor resiliencia y sostenibilidad. Para confirmar este presupuesto y evaluar la capacidad de reterritorialización alimentaria se ha desarrollado una metodología que aborda el estudio del sistema territorial como socioecosistema complejo, en el que se distinguen componentes de tipo social, construido y biofísico, que se encuentran interrelacionados. La historia de cambios en la organización del sistema, su estado actual y su capacidad de reorganizarse en estados alternativos son las bases de dicha evaluación. Esta metodología se aplica a la Comunidad de Madrid con el fin de describir su sistema territorial desde el punto de vista del abastecimiento alimentario y evaluar su capacidad de reterritorialización. ABSTRACT Deterritorialization is one of the defining characteristics of the contemporary urban system. This means that its development model is designed ignoring the attributes of the specific region in which is located, and the biophysical and cultural resources therein. Such territorialization is possible due to the intensive energy consumption that allows expanding to a global scale the flows of urban metabolism. This way, urban-rural linkages have been broken, increasing dependency on external resources. The modern food system is among the clearest expressions of a deterritorialized model. In a globalized food system, increasing distances between production and consumption spaces are possible through energy-intensive transport and preservation activities. Physical distanciation goes hand in hand with social disconnection and loss of identity, due to a hegemonic agro-industrial model that does not respect local landscapes, agricultural practices, traditional knowledge or genetic varieties. Both the regional and the food systems are highly vulnerable to external shocks that may affect their functions. The bioregionalist approach has proposed, since the industrial city until today, an alternative model, adapted to local conditions and rooted on proximity, which provides a sustainable and resilient regional planning and management. To confirm this assumption and assess the food reterritorialisation capacity, a methodology has been developed that address the regional system as a complex social-ecosystem, in which interrelated social, built and biophysical subsystems are included. Assessment is based in the analysis of regimes shifts in the history of the system, and in the description of its current and alternative states. This methodology is applied to the administrative region of Madrid in order to describe its regional food system and assess its reterritorialization capacity.
Resumo:
Entre los problemas medioambientales más trascendentales para la sociedad, se encuentra el del cambio climático así como el de la calidad del aire en nuestras áreas metropolitanas. El transporte por carretera es uno de los principales causantes, y como tal, las administraciones públicas se enfrentan a estos problemas desde varios ángulos: Cambios a modos de transporte más limpios, nuevas tecnologías y combustibles en los vehículos, gestión de la demanda y el uso de tecnologías de la información y la comunicación (ICT) aplicadas al transporte. En esta tesis doctoral se plantea como primer objetivo el profundizar en la comprensión de cómo ciertas medidas ICT afectan al tráfico, las emisiones y la propia dinámica de los vehículos. El estudio se basa en una campaña de recogida de datos con vehículos flotantes para evaluar los impactos de cuatro medidas concretas: Control de velocidad por tramo, límites variables de velocidad, limitador de velocidad (control de crucero) y conducción eficiente (eco‐driving). Como segundo objetivo, el estudio se centra en la conducción eficiente, ya que es una de las medidas que más ahorros de combustible presenta a nivel individual. Aunque estas reducciones están suficientemente documentadas en la literatura, muy pocos estudios se centran en estudiar el efecto que los conductores eficientes pueden tener en el flujo de tráfico, y cuál sería el impacto si se fuera aumentando el porcentaje de este tipo de conductores. A través de una herramienta de microsimulación de tráfico, se han construido cuatro modelos de vías urbanas que se corresponden con una autopista urbana, una arteria, un colector y una vía local. Gracias a los datos recogidos en la campaña de vehículos flotantes, se ha calibrado el modelo, tanto el escenario base como el ajuste de parámetros de conducción para simular la conducción eficiente. En total se han simulado 72 escenarios, variando el tipo de vía, la demanda de tráfico y el porcentaje de conductores eficientes. A continuación se han calculado las emisiones de CO2 and NOx mediante un modelo de emisiones a nivel microscópico. Los resultados muestran que en escenarios con alto porcentaje de conductores eficientes y altas demandas de tráfico las emisiones aumentan. Esto se debe a que las mayores distancias de seguridad y las aceleraciones y frenadas suaves hacen que aumente la congestión, produciendo así mayores emisiones a nivel global. Climate change and the reduced air quality in our metropolitan areas are two of the main environmental problems that the society is addressing currently. Being road transportation one of the main contributors, public administrations are facing these problems from different points of view: shift to cleaner modes, new fuels and vehicle technologies, demand management and the use of information and communication technologies (ICT) applied to transportation. The first objective of this thesis is to understand how certain ICT measures affect traffic, emissions and vehicle dynamics. The study is based on a data collection campaign with floating vehicles to evaluate the impact of four specific measures: section speed control, variable speed limits, cruise control and eco‐driving. The second objective of the study focuses on eco‐driving, as it is one of the measures that present the largest fuel savings at an individual level. Although these savings are well documented in the literature, few studies focus on how ecodrivers affect the surrounding vehicles and the traffic, and what would be the impact in case of different eco‐drivers percentage. Using a traffic micro‐simulation tool, four models in urban context have been built, corresponding to urban motorway, urban arterial, urban collector and a local street. Both the base‐case and the parameters setting to simulate eco‐driving have been calibrated with the data collected through floating vehicles. In total 72 scenarios were simulated, varying the type of road, traffic demand and the percentage of eco‐drivers. Then, the CO2 and NOx emissions have been estimated through the use of an emission model at microscopic level. The results show that in scenarios with high percentage of co‐drivers and high traffic demand the emissions rise. Higher headways and smooth acceleration and decelerations increase congestion, producing higher emissions globally.
Resumo:
Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.
Resumo:
A simulation-based modelling approach is used to examine the effects of stratified seed dispersal (representing the distribution of the majority of dispersal around the maternal parent and also rare long-distance dispersal) on the genetic structure of maternally inherited genomes and the colonization rate of expanding plant populations. The model is parameterized to approximate postglacial oak colonization in the UK, but is relevant to plant populations that exhibit stratified seed dispersal. The modelling approach considers the colonization of individual plants over a large area (three 500 km x 10 km rolled transects are used to approximate a 500 km x 300 km area). Our approach shows how the interaction of plant population dynamics with stratified dispersal can result in a spatially patchy haplotype structure. We show that while both colonization speeds and the resulting genetic structure are influenced by the characteristics of the dispersal kernel, they are robust to changes in the periodicity of long-distance events, provided the average number of long-distance dispersal events remains constant. We also consider the effects of additional physical and environmental mechanisms on plant colonization. Results show significant changes in genetic structure when the initial colonization of different haplotypes is staggered over time and when a barrier to colonization is introduced. Environmental influences on survivorship and fecundity affect both the genetic structure and the speed of colonization. The importance of these mechanisms in relation to the postglacial spread and genetic structure of oak in the UK is discussed.
Resumo:
The road to electric rope shovel automation is marked with technological innovations that include an increase in operational information available to mining operations. The CRCMining Shovel Operator Information System not only collects machine operational data but also provides the operator with knowledge-of-performance and influences his/her performance to achieve higher productivity with reduced machine duty. The operator’s behaviour is one of the most important aspects of the man-machine interaction to be considered before semi- or fully-automated shovel systems can be realised. This paper presents the results of the rope shovel studies conducted by CRCMining between 2002 and 2004, provides information on current research to improve shovel performance and briefly discusses the implications of human-system interactions on future designs of autonomous machines.
Resumo:
The finding that Pareto distributions are adequate to model Internet packet interarrival times has motivated the proposal of methods to evaluate steady-state performance measures of Pareto/D/1/k queues. Some limited analytical derivation for queue models has been proposed in the literature, but their solutions are often of a great mathematical challenge. To overcome such limitations, simulation tools that can deal with general queueing system must be developed. Despite certain limitations, simulation algorithms provide a mechanism to obtain insight and good numerical approximation to parameters of queues. In this work, we give an overview of some of these methods and compare them with our simulation approach, which are suited to solve queues with Generalized-Pareto interarrival time distributions. The paper discusses the properties and use of the Pareto distribution. We propose a real time trace simulation model for estimating the steady-state probability showing the tail-raising effect, loss probability, delay of the Pareto/D/1/k queue and make a comparison with M/D/1/k. The background on Internet traffic will help to do the evaluation correctly. This model can be used to study the long- tailed queueing systems. We close the paper with some general comments and offer thoughts about future work.
Resumo:
The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. ^ A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90–600 and phase change material particle concentrations of ϵp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (ϵp = 50%–70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor ϵeff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction ϵp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction ϵp, particle size dp, and the particle viscosity μ p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. ^ To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed. ^
Resumo:
Internet Protocol Television (IPTV) is a system where a digital television service is delivered by using Internet Protocol over a network infrastructure. There is considerable confusion and concern about the IPTV, since two different technologies have to be mended together to provide the end customers with some thing better than the conventional television. In this research, functional architecture of the IPTV system was investigated. Very Large Scale Integration based system for streaming server controller were designed and different ways of hosting a web server which can be used to send the control signals to the streaming server controller were studied. The web server accepts inputs from the keyboard and FPGA board switches and depending on the preset configuration the server will open a selected web page and also sends the control signals to the streaming server controller. It was observed that the applications run faster on PowerPC since it is embedded into the FPGA. Commercial market and Global deployment of IPTV were discussed.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250&mgr;M to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
The purpose of this research is to investigate how international students negotiate encounters with Irish students and construct ‘meaning’ from those encounters in the spaces of the university and city. As cities are increasingly characterised by a multiplexity of diversity, the issue of living with difference is becoming more and more pertinent. In the wake of escalating socio-spatial polarisation, inter-cultural tension, racism, and xenophobia, the geographies of encounter seek to untangle the interactions that occur in the quotidian activities and spaces of everyday life to determine whether such encounters might reduce prejudice, antipathy and indifference and establish common social bonds (Amin 2002; Valentine 2008). Thus far, the literature has investigated a number of sites of encounter; public space, the home, neighbourhoods, schools, sports clubs, public transport, cafes and libraries (Wilson 2011; Schuermans 2013; Hemming 2011; Neal and Vincent 2011; Mayblin, Valentine and Anderrson 2015; Laurier and Philo 2006; Valentine and Sadgrove 2013; Harris, Valentine and Piekut 2014; Fincher and Iveson 2008). While these spaces produce a range of outcomes, the literature remains frustrated by a lack of clarity of what constitutes a ‘meaningful’ encounter and how such encounters might be planned for. Drawing on survey and interview data with full-time international students at University College Cork, Ireland, this study contributes to understanding how encounters are shaped by the construction and reproduction of particular identities in particular spaces, imbuing spaces with uneven power frameworks that produce diverse outcomes. Rather than identifying a singular ‘meaningful’ outcome of encounter as a potential panacea to the issues of exclusion and oppression, the contention here is to recognise a range of outcomes that are created by individuals in a range of ways. To define one outcome of encounter as ‘meaningful’ is to overlook the scale of intensity of diverse interactions and the multiplicity of ways in which people learn to live with difference.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06