965 resultados para Updegraff, J. T. (Jonathan Taylor), 1822-1882.
Resumo:
Audit report on Taylor County, Iowa for the year ended June 30, 2010
Resumo:
A Comment on the Letter by Mark Mineev-Weinstein, Phys. Rev. Lett. 80, 2113 (1998). The authors of the Letter offer a Reply.
Resumo:
We show, both theoretically and experimentally, that the interface between two viscous fluids in a Hele-Shaw cell can be nonlinearly unstable before the Saffman-Taylor linear instability point is reached. We identify the family of exact elastica solutions [Nye et al., Eur. J. Phys. 5, 73 (1984)] as the unstable branch of the corresponding subcritical bifurcation which ends up at a topological singularity defined by interface pinchoff. We devise an experimental procedure to prepare arbitrary initial conditions in a Hele-Shaw cell. This is used to test the proposed bifurcation scenario and quantitatively asses its practical relevance.
Resumo:
We clarify the meaning of the results of Phys. Rev. E 60, R5013 (1999). We discuss the use and implications of periodic boundary conditions, as opposed to rigid-wall ones. We briefly argue that the solutions of the paper above are physically relevant as part of a more general issue, namely the possible generalization to dynamics, of the microscopic solvability scenario of selection.
Resumo:
We report on an experimental study of long normal Saffman-Taylor fingers subject to periodic forcing. The sides of the finger develop a low amplitude, long wavelength instability. We discuss the finger response in stationary and nonstationary situations, as well as the dynamics towards the stationary states. The response frequency of the instability increases with forcing frequency at low forcing frequencies, while, remarkably, it becomes independent of forcing frequency at large forcing frequencies. This implies a process of wavelength selection. These observations are in good agreement with previous numerical results reported in [Ledesma-Aguilar et al., Phys. Rev. E 71, 016312 (2005)]. We also study the average value of the finger width, and its fluctuations, as a function of forcing frequency. The average finger width is always smaller than the width of the steady-state finger. Fluctuations have a nonmonotonic behavior with a maximum at a particular frequency.
Resumo:
We make a numerical study of the effect that spatial perturbations have in normal Saffman-Taylor fingers driven at constant pressure gradients. We use a phase field model that allows for spatial variations in the Hele-Shaw cell. We find that, regardless of the specific way in which spatial perturbations are introduced, a lateral instability develops on the sides of the propagating Saffman-Taylor finger. Moreover, the instability exists regardless of the intensity of spatial perturbations in the cell as long as the perturbations are felt by the finger tip. If, as the finger propagates, the spatial perturbations felt by the tip change, the instability is nonperiodic. If, as the finger propagates, the spatial perturbations felt by the tip are persistent, the instability developed is periodic. In the later case, the instability is symmetrical or asymmetrical depending on the intensity of the perturbation.