920 resultados para Unsaturated Zones
Resumo:
We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Location is a primary cue in many context-aware computing systems, and is often represented as a global coordinate, room number, or Euclidean distance various landmarks. A user?s concept of location, however, is often defined in terms of regions in which common activities occur. We show how to partition a space into such regions based on patterns of observed user location and motion. These regions, which we call activity zones, represent regions of similar user activity, and can be used to trigger application actions, retrieve information based on previous context, and present information to users. We suggest that context-aware applications can benefit from a location representation learned from observing users. We describe an implementation of our system and present two example applications whose behavior is controlled by users? entry, exit, and presence in the zones.
Resumo:
Red mangrove (Rhizophora mangle L.) forests have distinct tree-height zones, with tall trees fringing the ocean and shorter trees in interior stands. A long-term nitrogen (N) and phosphorus (P) fertilization experiment in Almirante Bay, Bocas del Toro Province, Panama has shown that tree-height zonation is primarily related to nutrient limitation. This experiment was used to test the effects of in-situ nutrient additions and tree zonation on mangrove sediments. The sediments underlying the experimental R. mangle trees were sampled and N2 fixation, 15N, chlorophyll a, percent N and P, and percent organic biomass were quantified. Both N and P additions significantly affected almost every parameter measured in both zones within this experiment. These results are likely to have implications for management since N and P inputs are predicted to increase throughout the tropics and subtropics worldwide.
Resumo:
L'article examine comment s'affirme l'idéal-type émergent des eurorégions en Europe. En analysant les discours produits par des institutions, des acteurs économiques et des médias, nous reconstituons la définition du projet eurorégional à partir des diverses positions énonciatives et indépendamment des langues ou de la localisation géographique des eurorégions. D'un côté, les résultats mettent en évidence des métaphores caractéristiques du discours politique européen (la construction, l'expérimentation, le corps) qui contribuent à instaurer l'imaginaire d'un continuum territorial en Europe. D'un autre côté, les résultats dévoilent des zones d'ombre (dissensions, approximations, dispersions, concurrence) qui rendent la définition du projet eurorégional floue et difficile à appréhender pour le citoyen. L'analyse s'appuie sur un corpus authentique et multilingue en vue de déceler des régularités relatives au discours eurorégional. Elle mobilise des résultats textométriques simples mais vérifiables qui servent de repères à l'analyse qualitative.
Resumo:
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p31
On the Front Line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates
Resumo:
1.Identifying priority areas for marine vertebrate conservation is complex because species of conservation concern are highly mobile, inhabit dynamic habitats and are difficult to monitor. 2.Many marine vertebrates are known to associate with oceanographic fronts – physical interfaces at the transition between water masses – for foraging and migration, making them important candidate sites for conservation. Here, we review associations between marine vertebrates and fronts and how they vary with scale, regional oceanography and foraging ecology. 3.Accessibility, spatiotemporal predictability and relative productivity of front-associated foraging habitats are key aspects of their ecological importance. Predictable mesoscale (10s–100s km) regions of persistent frontal activity (‘frontal zones’) are particularly significant. 4.Frontal zones are hotspots of overlap between critical habitat and spatially explicit anthropogenic threats, such as the concentration of fisheries activity. As such, they represent tractable conservation units, in which to target measures for threat mitigation. 5.Front mapping via Earth observation (EO) remote sensing facilitates identification and monitoring of these hotspots of vulnerability. Seasonal or climatological products can locate biophysical hotspots, while near-real-time front mapping augments the suite of tools supporting spatially dynamic ocean management. 6.Synthesis and applications. Frontal zones are ecologically important for mobile marine vertebrates. We surmise that relative accessibility, predictability and productivity are key biophysical characteristics of ecologically significant frontal zones in contrasting oceanographic regions. Persistent frontal zones are potential priority conservation areas for multiple marine vertebrate taxa and are easily identifiable through front mapping via EO remote sensing. These insights are useful for marine spatial planning and marine biodiversity conservation, both within Exclusive Economic Zones and in the open oceans.
Resumo:
The accuracy of two satellite models of marine primary (PP) and new production (NP) were assessed against 14C and 15N uptake measurements taken during six research cruises in the northern North Atlantic. The wavelength resolving model (WRM) was more accurate than the Vertical General Production Model (VGPM) for computation of both PP and NP. Mean monthly satellite maps of PP and NP for both models were generated from 1997 to 2010 using SeaWiFS data for the Irminger basin and North Atlantic. Intra- and inter-annual variability of the two models was compared in six hydrographic zones. Both models exhibited similar spatio-temporal patterns: PP and NP increased from April to June and decreased by August. Higher values were associated with the East Greenland Current (EGC), Iceland Basin (ICB) and the Reykjanes Ridge (RKR) and lower values occurred in the Central Irminger Current (CIC), North Irminger Current (NIC) and Southern Irminger Current (SIC). The annual PP and NP over the SeaWiFS record was 258 and 82 gC m-2 yr-1 respectively for the VGPM and 190 and 41 gC m-2 yr-1 for the WRM. Average annual cumulative sum in the anomalies of NP for the VGPM were positively correlated with the North Atlantic Oscillation (NAO) in the EGC, CIC and SIC and negatively correlated with the multivariate ENSO index (MEI) in the ICB. By contrast, cumulative sum of the anomalies of NP for the WRM were significantly correlated with NAO only in the EGC and CIC. NP from both VGPM and WRM exhibited significant negative correlations with Arctic Oscillation (AO) in all hydrographic zones. The differences in estimates of PP and NP in these hydrographic zones arise principally from the parameterisation of the euphotic depth and the SST dependence of photo-physiological term in the VGPM, which has a greater sensitivity to variations in temperature than the WRM. In waters of 0 to 5C PP using the VGPM was 43% higher than WRM, from 5 to 10C the VGPM was 29% higher and from 10 to 15C the VGPM was 27% higher.