974 resultados para Unit cell doping
Resumo:
The unique carbohydrate-binding property of lectins makes them invaluable tools in biomedical research. Here, we report the purification, partial primary structure, carbohydrate affinity characterization, crystallization, and preliminary X-ray diffraction analysis of a lactose-specific lectin from Cymbosema roseum seeds (CRLII). Isolation and purification of CRLII was performed by a single step using a Sepharose-4B-lactose affinity chromatography column. The carbohydrate affinity characterization was carried using assays for hemagglutination activity and inhibition. CRLII showed hemagglutinating activity toward rabbit erythrocytes. O-glycoproteins from mucine mucopolysaccharides showed the most potent inhibition capacity at a minimum concentration of 1.2 A mu g mL(-1). Protein sequencing by mass spectrometry was obtained by the digestion of CRLII with trypsin, Glu-C, and AspN. CRLII partial protein sequence exhibits 46% similarity with the ConA-like alpha chain precursor. Suitable protein crystals were obtained with the hanging-drop vapor-diffusion method with 8% ethylene glycol, 0.1 M Tris-HCl pH 8.5, and 11% PEG 8,000. The monoclinic crystals belong to space group P2(1) with unit cell parameters a = 49.4, b = 89.6, and c = 100.8 A....
Resumo:
Two compounds [2tbpo·H+)2[CuCl4]= (yellow) and (2tbpo·H+)2[CuBr4]= (dark purple) (tbpo = tribenzylphosphine oxide) have been prepared and investigated by means of crystal structure, electronic, vibrational and ESR spectra. The crystal structure of the (2tbpo·H+)2[CuCl4]= complex was determined by three-dimensional X-ray diffraction. The compound crystallizes in the space group P42/n with unit-cell dimensions a = 19.585(2), c = 9.883(1)Å, V = 3790 (1)Å3, Z = 2, Dm = 1.303 (flotation) Dx = 1.302 Mg m-3. The structure was solved by direct methods and refined by blocked full-matrix least-squares to R = 0.053 for 2583 observed reflections. Cu(II) is coordinated to four chlorides in a tetrahedral arrangement. Tribenzylphosphine oxide molecules, related by a centre of inversion, are connected by a short hydrogen bridge. Chemical analysis, electronic and vibrational spectra showed that the bromide compound is similar to the chloride one and can be formulated as (2tbpo·H+)2[CuBr4]=. The position of the dd transition bands, the charge transfer bands, the ESR and the vibrational spectra of both complexes are discussed. The results are compared with analogous complexes cited in the literature. © 1983.
Resumo:
The bis (thiocyanatemercury)tetracarbonyliron, [Fe(CO)4(HgSCN)2], was prepared from [Fe(CO) 5] and Hg(SCN)2, and studied by IR spectroscopy and X-ray diffraction. The compound crystallizes in the tetragonal space group I4,1/a. The unit cell, with dimensions of a = 13.778(3), c = 13.234(3) Å, V = 2512.3(9) Å3, contains four molecules. The iron atom is octahedrally coordinated by four carbonyl groups and two mercury atoms in cis positions. The coordination of the mercury atoms is distorted square-planar, since, besides mercury-iron and mercury-sulphur bonds, there are also mercury-mercury and mercury-nitrogen interactions. The FeHg distance is 2.506(5)Å and the HgFeHg angle is 78.0(1)°. © 1987.
Resumo:
The structure of tick anticoagulant peptide (TAP) has been determined by X-ray crystallography at t.6 Å resolution complexed with bovine pancreatic trypsin inhibitor (BPTI). The TAP-BPTI crystals are tetragonal, a = b = 46.87, c = 50.35 Å, space group P41, four complexes per unit cell. The TAP molecules are highly dipolar and form an intermolecular helical array along the c-axis with a diameter of about 45 Å. Individual TAP units interact in a head-to-tail fashion, the positive end of one molecule associating with the distal negative end of another, and vice versa. The BPTI molecules have a uniformly distributed positively charged surface that interacts extensively through 14 hydrogen bonds and two hydrogen bonded salt bridges with the helical groove around the helical TAP chains. Comparing the structure of TAP in TAP-BPTI with TAP bound to factor Xa(Xa) suggests a massive reorganization in the N-terminal tetrapeptide and the first disulfide loop of TAP (CyS5(T)- Cys 15(T)) upon binding to Xa. The Tyr1(T)OH atom of TAP moves 14.2 Å to interact with Asp189 of the S1 specificity site, Arg3(T)CZ moves 5.0 Å with the guanidinium group forming a cation-π-electron complex in the S4 subsite of Xa, while Lys7(T)NZ differs in position by 10.6 Å in TAP-BPTI and TAP-Xa, all of which indicates a different pre-Xa-bound conformation for the N- terminal of TAP in its native state. In contrast to TAP, the BPTI structure of TAP-BPTI is practically the same as all those of previously determined structures of BPTI, only arginine and lysine side-chain conformations showing significant differences.
Resumo:
The crystal structure of the Aurivillius compound Bi2BaTa2O9 prepared via the chemical route was determined by direct methods using EXPO97, and refined using the Rietveld method with conventional X-ray diffraction data. The structure was found to be tetragonal (space group I4/mmm, number 139) and Z = 2, isomorphic of the Bi2BaNb2O9 reported by Blake and co-workers in the literature (1997). Two refinements were performed using the two asymmetry functions of DBWS-9807 (release 20/May/99). The unit cell for each case are: a = 3.932 22(6) Å, c = 25.5053(6) Å (RA) and a = 3.93250(7) Å, c = 25.5069(6) Å (RCF). The differences for atom positions, interatomic distances and angles are in the range of one standard deviation. Final agreements factors are: Rwp = 7.97%, S = 1.84, RBragg = 4.28%(RA), Rwp = 7.98%, S = 1.84, RBragg = 4.30% (RCF). The occupancies of Ba and Bi in site 2b were refined but constrained to have their summation equal to 1.00. The same constraints were applied to the Ba and Bi of the 4e site. The results show that on site 2b there are 70% of Ba and 30% of Bi and on the site 4e there are 82% of Bi and 18% of Ba. The charge equilibrium is maintained for one standard deviation of the site occupancies. © 2000 International Centre for Diffraction Data.
Resumo:
Bioceramic systems based on hydroxylapatite (HAP) are an important class of bioactive materials that may promote bone regeneration. The aim of this research was to evaluate how the stoichiometry of HAP influences its microstructural properties when diagnosed using the combined Rietveld method and Maximum entropy method (MEM). The Rietveld Method (RM) is recognizably a powerful tool used to obtain structural and microstructural information of polycrystalline samples analyzed by x-ray diffraction. Latterly have combined the RM with the maximum entropy method (MEM), with the goal of improve structural refinement results. The MEM provides high resolution maps of electron density and their analysis leave the accurate localization of atoms inside of unit cell. Like that, cycles Rietveld-MEM allow an excellent structural refinement In this work, a hydroxylapatite sample obtained by emulsion method had its structure refined using one cycle Rietveld-MEM with x-ray diffraction data. The indices obtained in initial refinement was Rwp = 7.50%, Re = 6.56%, S - 1.14% e RB = 1.03%. After MEM refinement and electron densities maps analysis to correction of atomics positions, the news indicators of Rietveld refinement quality was Rwp = 7.35%, Re = 6.56%, S = 1.12% and RB = 0.75%. The excellent result obtained to RB shows the efficiency of MEM as auxiliary in the refinement of structure of hydroxylapatite by RM.
Resumo:
Polycrystalline Nd1-xEuxNiO3 (0≤x≤0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at ∼1000 °C under oxygen pressures as high as 80bar. X-ray diffraction (XRD) and neutron powder diffraction (NPD), electrical resistivity ρ(T), and magnetization M(T) measurements were performed on these compounds. The NPD and XRD results indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group Pbnm. The analysis of the structural parameters revealed a sudden and small expansion of ∼0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of ∼0.003 of the average Ni-O distance and a simultaneous decrease of ∼-0.5° of the Ni-O-Ni superexchange angle. The ρ(T) measurements revealed a MI transition occurring at temperatures ranging from TMI∼193 to 336K for samples with x ≤ 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO3 during heating and cooling processes, suggesting a first-order character of the phase transition at TMI. The width of this thermal hysteresis was found to decrease appreciably for the sample Nd 0.7Eu0.3NiO3. The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first-order character of the transition in NdNiO3. © 2006 IOP Publishing Ltd.
Resumo:
SiC fiber-reinforced SiC matrix composite (SiCf/SiC) is one of the leading candidates in ceramic materials for engineering applications due to its unique combination of properties such as high thermal conductivity, high resistance to corrosion and working conditions. Fiber-reinforced composites are materials which exhibit a significant improvement in properties like ductility in comparison to the monolithic SiC ceramic. The SiCf/SiC composite was obtained from a C/C composite precursor using convertion reaction under high temperature and controlled atmosphere. In this work, SiC phase presented the stacking faults in the structure, being not possible to calculate the unit cell size, symmetry and bond lengths but it seem equal card number 29-1129 of JCPDS.
Resumo:
Using numerical simulations, we analyze the anisotropy effects in the critical currents and dynamical properties of vortices in a thin superconducting film submitted to hexagonal and Kagomé periodical pinning arrays. The calculations are performed at zero temperature, for transport currents parallel and perpendicular to the main axis of the lattice, and parallel to the diagonal axis of the rhombic unit cell. We show that the critical currents and dynamic properties are anisotropic for both pinning arrays and all directions of the transport current. The anisotropic effects are more significant just above the critical current and disappear with higher values of current and both pinning arrays. The dynamical phases for each case and a wide range of transport forces are analyzed. © 2012 Springer Science+Business Media, LLC.
Resumo:
The Schiff base thiophenyl-2-methylidene-2-aminophenol (ImineOH) is obtained from a stoichiometric mixture of 2-thiophenecarboxaldehyde and 2-aminophenol in ethanol under reflux at 90 C. Its crystal structure is determined by single crystal X-ray diffraction. ImineOH packs in an orthorhombic unit cell in the Pbca space group with the unit cell parameters a = 16.942(4) Å, b = 13.4395(11) Å, and c = 17.5857(12) Å, V = 4004.1(10) Å3, Z = 16. Strong hydrogen bonds are present in the ImineOH structure. Apart from the X-ray study, ImineOH was characterized by elemental analysis (CHN-S) and FT-IR (4000 cm-1 to 400 cm-1), UV-Vis and 13C, 1H, and 15N NMR spectroscopic measurements. © 2013 Pleiades Publishing, Ltd.
Resumo:
Chemical and structural data are reported for platinum-palladium intermediates from two nuggets found at Corrego Bom Sucesso, Minas Gerais, Brazil. Three grains with simple stoichiometries (i.e. PtxPd1 -x with x ∼0.67, ∼0.5 and ∼0.33, which correspond to Pt2Pd, PtPd and PtPd2, respectively) were characterized by single-crystal X-ray diffraction and electron-probe microanalysis. In the absence of single-crystal data it might be tempting to hypothesize that such simple stoichiometries represent distinct mineral species, however structural analyses show that all of the phases are cubic and crystallize in space group Fm3̄m. They are, therefore, natural intermediates in the palladium-platinum solid solution. Reflectance and micro-hardness values are reported for the samples and a comparison with the pure metallic elements made. On the basis of information gained from the chemical and structural characterization it can be concluded that there is a complete solid solution between Pt and Pd in nature. These findings corroborate results from experiments on synthetic compounds. © 2013 The Mineralogical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC