899 resultados para Uncertainty of forecasts
Resumo:
We consider different methods for combining probability forecasts. In empirical exercises, the data generating process of the forecasts and the event being forecast is not known, and therefore the optimal form of combination will also be unknown. We consider the properties of various combination schemes for a number of plausible data generating processes, and indicate which types of combinations are likely to be useful. We also show that whether forecast encompassing is found to hold between two rival sets of forecasts or not may depend on the type of combination adopted. The relative performances of the different combination methods are illustrated, with an application to predicting recession probabilities using leading indicators.
Resumo:
I consider the possibility that respondents to the Survey of Professional Forecasters round their probability forecasts of the event that real output will decline in the future, as well as their reported output growth probability distributions. I make various plausible assumptions about respondents’ rounding practices, and show how these impinge upon the apparent mismatch between probability forecasts of a decline in output and the probabilities of this event implied by the annual output growth histograms. I find that rounding accounts for about a quarter of the inconsistent pairs of forecasts.
Resumo:
In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office’s 24- member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model’s parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits “jumpiness” in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.
Resumo:
This technique paper describes a novel method for quantitatively and routinely identifying auroral breakup following substorm onset using the Time History of Events and Macroscale Interactions During Substorms (THEMIS) all-sky imagers (ASIs). Substorm onset is characterised by a brightening of the aurora that is followed by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in the auroral intensity i(t) and the time derivative of auroral intensity i'(t). Utilising both i(t) and i'(t) we have developed an algorithm for identifying the time interval and spatial location of auroral breakup during the substorm expansion phase within the field of view of ASI data based solely on quantifiable characteristics of the optical auroral emissions. We compare the time interval determined by the algorithm to independently identified auroral onset times from three previously published studies. In each case the time interval determined by the algorithm is within error of the onset independently identified by the prior studies. We further show the utility of the algorithm by comparing the breakup intervals determined using the automated algorithm to an independent list of substorm onset times. We demonstrate that up to 50% of the breakup intervals characterised by the algorithm are within the uncertainty of the times identified in the independent list. The quantitative description and routine identification of an interval of auroral brightening during the substorm expansion phase provides a foundation for unbiased statistical analysis of the aurora to probe the physics of the auroral substorm as a new scientific tool for aiding the identification of the processes leading to auroral substorm onset.
Resumo:
Diabatic processes can alter Rossby wave structure; consequently errors arising from model processes propagate downstream. However, the chaotic spread of forecasts from initial condition uncertainty renders it difficult to trace back from root mean square forecast errors to model errors. Here diagnostics unaffected by phase errors are used, enabling investigation of systematic errors in Rossby waves in winter-season forecasts from three operational centers. Tropopause sharpness adjacent to ridges decreases with forecast lead time. It depends strongly on model resolution, even though models are examined on a common grid. Rossby wave amplitude reduces with lead time up to about five days, consistent with under-representation of diabatic modification and transport of air from the lower troposphere into upper-tropospheric ridges, and with too weak humidity gradients across the tropopause. However, amplitude also decreases when resolution is decreased. Further work is necessary to isolate the contribution from errors in the representation of diabatic processes.
Resumo:
Within the SPARC Data Initiative, the first comprehensive assessment of the quality of 13 water vapor products from 11 limb-viewing satellite instruments (LIMS, SAGE II, UARS-MLS, HALOE, POAM III, SMR, SAGE III, MIPAS, SCIAMACHY, ACE-FTS, and Aura-MLS) obtained within the time period 1978-2010 has been performed. Each instrument's water vapor profile measurements were compiled into monthly zonal mean time series on a common latitude-pressure grid. These time series serve as basis for the "climatological" validation approach used within the project. The evaluations include comparisons of monthly or annual zonal mean cross sections and seasonal cycles in the tropical and extratropical upper troposphere and lower stratosphere averaged over one or more years, comparisons of interannual variability, and a study of the time evolution of physical features in water vapor such as the tropical tape recorder and polar vortex dehydration. Our knowledge of the atmospheric mean state in water vapor is best in the lower and middle stratosphere of the tropics and midlatitudes, with a relative uncertainty of. 2-6% (as quantified by the standard deviation of the instruments' multiannual means). The uncertainty increases toward the polar regions (+/- 10-15%), the mesosphere (+/- 15%), and the upper troposphere/lower stratosphere below 100 hPa (+/- 30-50%), where sampling issues add uncertainty due to large gradients and high natural variability in water vapor. The minimum found in multiannual (1998-2008) mean water vapor in the tropical lower stratosphere is 3.5 ppmv (+/- 14%), with slightly larger uncertainties for monthly mean values. The frequently used HALOE water vapor data set shows consistently lower values than most other data sets throughout the atmosphere, with increasing deviations from the multi-instrument mean below 100 hPa in both the tropics and extratropics. The knowledge gained from these comparisons and regarding the quality of the individual data sets in different regions of the atmosphere will help to improve model-measurement comparisons (e.g., for diagnostics such as the tropical tape recorder or seasonal cycles), data merging activities, and studies of climate variability.
Resumo:
As satellite technology develops, satellite rainfall estimates are likely to become ever more important in the world of food security. It is therefore vital to be able to identify the uncertainty of such estimates and for end users to be able to use this information in a meaningful way. This paper presents new developments in the methodology of simulating satellite rainfall ensembles from thermal infrared satellite data. Although the basic sequential simulation methodology has been developed in previous studies, it was not suitable for use in regions with more complex terrain and limited calibration data. Developments in this work include the creation of a multithreshold, multizone calibration procedure, plus investigations into the causes of an overestimation of low rainfall amounts and the best way to take into account clustered calibration data. A case study of the Ethiopian highlands has been used as an illustration.
Resumo:
Assessments concerning the effects of climate change, water resource availability and water deprivation in West Africa have not frequently considered the positive contribution to be derived from collecting and reusing water for domestic purposes. Where the originating water is taken from a clean water source and has been used the first time for washing or bathing, this water is commonly called “greywater”. Greywater is a prolific resource that is generated wherever people live. Treated greywater can be used for domestic cleaning, for flushing toilets where appropriate, for washing cars, sometimes for watering kitchen gardens, and for clothes washing prior to rinsing. Therefore, a large theoretical potential exists to increase total water resource availability if greywater were to be widely reused. Locally treated greywater reduces the distribution network requirement, lower construction effort and cost and, wherever possible, minimising the associated carbon footprint. Such locally treated greywater offers significant practical opportunities for increasing the total available water resources at a local level. The reuse of treated greywater is one important action that will help to mitigate the reducing availability of clean water supplies in some areas, and the expected mitigation required in future aligns well with WHO/UNICEF (2012) aspirations. The evaluation of potential opportunities for prioritising greywater systems to support water reuse takes into account the availability of water resources, water use indicators and published estimates in order to understand typical patterns of water demand. The approach supports knowledge acquisition regarding local conditions for enabling capacity building for greywater reuse, the understanding of systems that are most likely to encourage greywater reuse, and practices and future actions to stimulate greywater infrastructure planning, design and implementation. Although reuse might be considered to increase the uncertainty of achieving a specified quality of the water supply, robust methods and technologies are available for local treatment. Resource strategies for greywater reuse have the potential to consistently improve water efficiency and availability in water impoverished and water stressed regions of Ghana and West Africa. Untreated greywater is referred to as “greywater”; treated greywater is referred to as “treated greywater” in this paper.
Resumo:
The statistical properties and skill in predictions of objectively identified and tracked cyclonic features (frontal waves and cyclones) are examined in MOGREPS-15, the global 15-day version of the Met Office Global and Regional Ensemble Prediction System (MOGREPS). The number density of cyclonic features is found to decline with increasing lead-time, with analysis fields containing weak features which are not sustained past the first day of the forecast. This loss of cyclonic features is associated with a decline in area averaged enstrophy with increasing lead time. Both feature number density and area averaged enstrophy saturate by around 7 days into the forecast. It is found that the feature number density and area averaged enstrophy of forecasts produced using model versions that include stochastic energy backscatter saturate at higher values than forecasts produced without stochastic physics. The ability of MOGREPS-15 to predict the locations of cyclonic features of different strengths is evaluated at different spatial scales by examining the Brier Skill (relative to the analysis climatology) of strike probability forecasts: the probability that a cyclonic feature center is located within a specified radius. The radius at which skill is maximised increases with lead time from 650km at 12h to 950km at 7 days. The skill is greatest for the most intense features. Forecast skill remains above zero at these scales out to 14 days for the most intense cyclonic features, but only out to 8 days when all features are included irrespective of intensity.
Resumo:
Using lessons from idealised predictability experiments, we discuss some issues and perspectives on the design of operational seasonal to inter-annual Arctic sea-ice prediction systems. We first review the opportunities to use a hierarchy of different types of experiment to learn about the predictability of Arctic climate. We also examine key issues for ensemble system design, such as: measuring skill, the role of ensemble size and generation of ensemble members. When assessing the potential skill of a set of prediction experiments, using more than one metric is essential as different choices can significantly alter conclusions about the presence or lack of skill. We find that increasing both the number of hindcasts and ensemble size is important for reliably assessing the correlation and expected error in forecasts. For other metrics, such as dispersion, increasing ensemble size is most important. Probabilistic measures of skill can also provide useful information about the reliability of forecasts. In addition, various methods for generating the different ensemble members are tested. The range of techniques can produce surprisingly different ensemble spread characteristics. The lessons learnt should help inform the design of future operational prediction systems.
Resumo:
The notions of resolution and discrimination of probability forecasts are revisited. It is argued that the common concept underlying both resolution and discrimination is the dependence (in the sense of probability theory) of forecasts and observations. More specifically, a forecast has no resolution if and only if it has no discrimination if and only if forecast and observation are stochastically independent. A statistical tests for independence is thus also a test for no resolution and, at the same time, for no discrimination. The resolution term in the decomposition of the logarithmic scoring rule, and the area under the Receiver Operating Characteristic will be investigated in this light.
Resumo:
Ecological forecasting is difficult but essential, because reactive management results in corrective actions that are often too late to avert significant environmental damage. Here, we appraise different forecasting methods with a particular focus on the modelling of species populations. We show how simple extrapolation of current trends in state is often inadequate because environmental drivers change in intensity over time and new drivers emerge. However, statistical models, incorporating relationships with drivers, simply offset the prediction problem, requiring us to forecast how the drivers will themselves change over time. Some authors approach this problem by focusing in detail on a single driver, whilst others use ‘storyline’ scenarios, which consider projected changes in a wide range of different drivers. We explain why both approaches are problematic and identify a compromise to model key drivers and interactions along with possible response options to help inform environmental management. We also highlight the crucial role of validation of forecasts using independent data. Although these issues are relevant for all types of ecological forecasting, we provide examples based on forecasts for populations of UK butterflies. We show how a high goodness-of-fit for models used to calibrate data is not sufficient for good forecasting. Long-term biological recording schemes rather than experiments will often provide data for ecological forecasting and validation because these schemes allow capture of landscape-scale land-use effects and their interactions with other drivers.
Resumo:
Quantitative palaeoclimate reconstructions are widely used to evaluate climatemodel performance. Here, as part of an effort to provide such a data set for Australia, we examine the impact of analytical decisions and sampling assumptions on modern-analogue reconstructions using a continent-wide pollen data set. There is a high degree of correlation between temperature variables in the modern climate of Australia, but there is sufficient orthogonality in the variations of precipitation, summer and winter temperature and plant–available moisture to allow independent reconstructions of these four variables to be made. The method of analogue selection does not affect the reconstructions, although bootstrap resampling provides a more reliable technique for obtaining robust measures of uncertainty. The number of analogues used affects the quality of the reconstructions: the most robust reconstructions are obtained using 5 analogues. The quality of reconstructions based on post-1850 CE pollen samples differ little from those using samples from between 1450 and 1849 CE, showing that European post settlement modification of vegetation has no impact on the fidelity of the reconstructions although it substantially increases the availability of potential analogues. Reconstructions based on core top samples are more realistic than those using surface samples, but only using core top samples would substantially reduce the number of available analogues and therefore increases the uncertainty of the reconstructions. Spatial and/or temporal averaging of pollen assemblages prior to analysis negatively affects the subsequent reconstructions for some variables and increases the associated uncertainties. In addition, the quality of the reconstructions is affected by the degree of spatial smoothing of the original climate data, with the best reconstructions obtained using climate data froma 0.5° resolution grid, which corresponds to the typical size of the pollen catchment. This study provides a methodology that can be used to provide reliable palaeoclimate reconstructions for Australia, which will fill in a major gap in the data sets used to evaluate climate models.
Resumo:
The impact of extreme sea ice initial conditions on modelled climate is analysed for a fully coupled atmosphere ocean sea ice general circulation model, the Hadley Centre climate model HadCM3. A control run is chosen as reference experiment with greenhouse gas concentration fixed at preindustrial conditions. Sensitivity experiments show an almost complete recovery from total removal or strong increase of sea ice after four years. Thus, uncertainties in initial sea ice conditions seem to be unimportant for climate modelling on decadal or longer time scales. When the initial conditions of the ocean mixed layer were adjusted to ice-free conditions, a few substantial differences remained for more than 15 model years. But these differences are clearly smaller than the uncertainty of the HadCM3 run and all the other 19 IPCC fourth assessment report climate model preindustrial runs. It is an important task to improve climate models in simulating the past sea ice variability to enable them to make reliable projections for the 21st century.
Resumo:
Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400–1840 cm−1 and 3440–3970 cm−1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm−1 band) and 7% for self-broadening coefficients (3600 cm−1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm−1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4–5% for both intensities and half-widths.