980 resultados para UV detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the therapeutic drug monitoring laboratory in support of immunosuppressant drug therapy is well established, and the introduction of sirolimus (SRL) is a new direction in this field. The lack of an immunoassay for several years has restricted the availability of SRL assay services. The recent availability of a CEDIA (R) SRL assay has the potential to improve this situation. The present communication has compared the CEDIA (R) SRL method with 2 established chromatographic methods, HPLC-UV and HPLC-MS/MS. The CEDIA (R) method, run on a Hitachi 917 analyzer, showed acceptable validation criteria with within-assay precision of 9.1% and 3.3%, and bias of 17.1% and 5.8%, at SRL concentrations of 5.0 mu g/L and 20 mu g/L, respectively. The corresponding between-run precision values were 11.5% and 3.3% and bias of 7.1% and 2.9% at 5.0 mu g/L and 20 mu g/L, respectively, The lower limit of quantification was found to be 3.0 mu g/L. A series of 96 EDTA whole-blood samples predominantly from renal transplant recipients were assayed by the 3 methods for comparison. It was found that the CEDIA (R) method showed a Deming regression line of CEDIA = 1.20 X HPLC-MS/MS - 0.07 (r = 0.934, SEE = 1.47), with a mean bias of 20.4%. Serial blood samples from 8 patients included in this evaluation showed that the CEDIA (R) method reflected the clinical fluctuations in the chromatographic methods, albeit with the variable bias noted. The CEDIA (R) method on the H917 analyzer is therefore a useful adjunct to SRL dosage individualization in renal transplant recipients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of surface plasmonic fibre devices were fabricated using multiple coatings deposited on a lapped section of a single mode fibre and post-fabrication UV laser irradiation processing with a phase mask, producing a surface relief grating structure. These devices showed high spectral sensitivity in the aqueous index regime ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. The devices were then coated with human thrombin binding aptamer. Several concentrations of thrombin in buffer solution were made, ranging from 1nM to 1µM. All the concentrations were detectable by the devices demonstrating that sub-nM concentrations may be monitored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-period grating (LPG) sensor is used to detect small variations in the concentration of an organic aromatic compound (xylene) in a paraffin (heptane) solution. A new design procedure is adopted and demonstrated to maximize the sensitivity of LPG (wavelength shift for a change in the surrounding refractive index, (dλ/dn3)) for a given application. The detection method adopted is comparable to the standard technique used in industry (high performance liquid chromatograph and UV spectroscopy) which has a relative accuracy between ∼±0.5% and 5%. The minimum detectable change in volumetric concentration is 0.04% in a binary fluid with the detection system presented. This change of concentration relates to a change in refractive index of Δn ∼ 6 × 10-5. © 2001 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The superoxide radical is considered to play important roles in physiological processes as well as in the genesis of diverse cytotoxic conditions such as cancer, various cardiovascular disorders and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). The detection and quantification of superoxide within cells is of critical importance to understand biological roles of superoxide and to develop preventive strategies against free radical-mediated diseases. Cyclic nitrone spin traps such as DMPO, EMPO, DEPMPO, BMPO and their derivatives have been widely used in conjunction with ESR spectroscopy to detect cellular superoxide with some success. However, the formation of unstable superoxide adducts from the reaction of cyclic nitrones with superoxide is a stumbling block in detecting superoxide by using electron spin resonance (ESR). A chemiluminescent probe, lucigenin, and fluorogenic probes, hydroethidium and MitoSox, are the other frequently used methods in detecting superoxide. However, luceginen undergoes redox-cycling producing superoxide by itself, and hydroethidium and MitoSox react with other oxidants apart from superoxide forming red fluorescent products contributing to artefacts in these assays. Hence, both methods were deemed to be inappropriate for superoxide detection. In this study, an effective approach, a selective mechanism-based colorimetric detection of superoxide anion has been developed by using silylated azulenyl nitrones spin traps. Since a nitrone moiety and an adjacent silyl group react readily with radicals and oxygen anions respectively, such nitrones can trap superoxide efficiently because superoxide is both a radical and an oxygen anion. Moreover, the synthesized nitrone is designed to be triggered solely by superoxide and not by other commonly observed oxygen radicals such as hydroxyl radical, alkoxyl radicals and peroxyl radical. In vitro studies have shown that these synthesized silylated azylenyl nitrones and the mitochondrial-targeted guanylhydrazone analog can trap superoxide efficiently yielding UV-vis identifiable and even potentially fluorescence-detectable orange products. Therefore, the chromotropic detection of superoxide using these nitrones can be a promising method in contrast to other available methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45 fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2 pM (by UV-vis) or 18.0 fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3 hours, thus demonstrating its practicality for food analysis.

Relevância:

20.00% 20.00%

Publicador: