955 resultados para URBAN CLIMATE
Resumo:
Regional and remote communities in tropical Queensland are among Australia’s most vulnerable in the face of climate change. At the same time, these socially and economically vulnerable regions house some of Australia’s most significant biodiversity values. Past approaches to terrestrial biodiversity management have focused on tackling biophysical interventions through the use of biophysical knowledge. An equally important focus should be placed on building regional-scale community resilience if some of the worst biodiversity impacts of climate change are to be avoided or mitigated. Despite its critical need, more systemic or holistic approaches to natural resource management have been rarely trialed and tested in a structured way. Currently, most strategic interventions in improving regional community resilience are ad hoc, not theory-based and short term. Past planning approaches have not been durable, nor have they been well informed by clear indicators. Research into indicators for community resilience has been poorly integrated within adaptive planning and management cycles. This project has aimed to resolve this problem by: * Reviewing the community and social resilience and adaptive planning literature to reconceptualise an improved framework for applying community resilience concepts; * Harvesting and extending work undertaken in MTSRF Phase 1 to identifying the learnings emerging from past MTSRF research; * Distilling these findings to identify new theoretical and practical approaches to the application of community resilience in natural resource use and management; * Reconsidering the potential interplay between a region’s biophysical and social planning processes, with a focus on exploring spatial tools to communicate climate change risk and its consequent environmental, economic and social impacts, and; * Trialling new approaches to indicator development and adaptive planning to improve community resilience, using a sub-regional pilot in the Wet Tropics. In doing so, we also looked at ways to improve the use and application of relevant spatial information. Our theoretical review drew upon the community development, psychology and emergency management literature to better frame the concept of community resilience relative to aligned concepts of social resilience, vulnerability and adaptive capacity. Firstly, we consider community resilience as a concept that can be considered at a range of scales (e.g. regional, locality, communities of interest, etc.). We also consider that overall resilience at higher scales will be influenced by resilience levels at lesser scales (inclusive of the resilience of constituent institutions, families and individuals). We illustrate that, at any scale, resilience and vulnerability are not necessarily polar opposites, and that some understanding of vulnerability is important in determining resilience. We position social resilience (a concept focused on the social characteristics of communities and individuals) as an important attribute of community resilience, but one that needs to be considered alongside economic, natural resource, capacity-based and governance attributes. The findings from the review of theory and MTSRF Phase 1 projects were synthesized and refined by the wider project team. Five predominant themes were distilled from this literature, research review and an expert analysis. They include the findings that: 1. Indicators have most value within an integrated and adaptive planning context, requiring an active co-research relationship between community resilience planners, managers and researchers if real change is to be secured; 2. Indicators of community resilience form the basis for planning for social assets and the resilience of social assets is directly related the longer term resilience of natural assets. This encourages and indeed requires the explicit development and integration of social planning within a broader natural resource planning and management framework; 3. Past indicator research and application has not provided a broad picture of the key attributes of community resilience and there have been many attempts to elicit lists of “perfect” indicators that may never be useful within the time and resource limitations of real world regional planning and management. We consider that modeling resilience for proactive planning and prediction purposes requires the consideration of simple but integrated clusters of attributes; 4. Depending on time and resources available for planning and management, the combined use of well suited indicators and/or other lesser “lines of evidence” is more flexible than the pursuit of perfect indicators, and that; 5. Index-based, collaborative and participatory approaches need to be applied to the development, refinement and reporting of indicators over longer time frames. We trialed the practical application of these concepts via the establishment of a collaborative regional alliance of planners and managers involved in the development of climate change adaptation strategies across tropical Queensland (the Gulf, Wet Tropics, Cape York and Torres Strait sub-regions). A focus on the Wet Tropics as a pilot sub-region enabled other Far North Queensland sub-region’s to participate and explore the potential extension of this approach. The pilot activities included: * Further exploring ways to innovatively communicate the region’s likely climate change scenarios and possible environmental, economic and social impacts. We particularly looked at using spatial tools to overlay climate change risks to geographic communities and social vulnerabilities within those communities; * Developing a cohesive first pass of a State of the Region-style approach to reporting community resilience, inclusive of regional economic viability, community vitality, capacitybased and governance attributes. This framework integrated a literature review, expert (academic and community) and alliance-based contributions; and * Early consideration of critical strategies that need to be included in unfolding regional planning activities with Far North Queensland. The pilot assessment finds that rural, indigenous and some urban populations in the Wet Tropics are highly vulnerable and sensitive to climate change and may require substantial support to adapt and become more resilient. This assessment finds that under current conditions (i.e. if significant adaptation actions are not taken) the Wet Tropics as a whole may be seriously impacted by the most significant features of climate change and extreme climatic events. Without early and substantive action, this could result in declining social and economic wellbeing and natural resource health. Of the four attributes we consider important to understanding community resilience, the Wet Tropics region is particularly vulnerable in two areas; specifically its economic vitality and knowledge, aspirations and capacity. The third and fourth attributes, community vitality and institutional governance are relatively resilient but are vulnerable in some key respects. In regard to all four of these attributes, however, there is some emerging capacity to manage the possible shocks that may be associated with the impacts of climate change and extreme climatic events. This capacity needs to be carefully fostered and further developed to achieve broader community resilience outcomes. There is an immediate need to build individual, household, community and sectoral resilience across all four attribute groups to enable populations and communities in the Wet Tropics region to adapt in the face of climate change. Preliminary strategies of importance to improve regional community resilience have been identified. These emerging strategies also have been integrated into the emerging Regional Development Australia Roadmap, and this will ensure that effective implementation will be progressed and coordinated. They will also inform emerging strategy development to secure implementation of the FNQ 2031 Regional Plan. Of most significance in our view, this project has taken a co-research approach from the outset with explicit and direct importance and influence within the region’s formal planning and management arrangements. As such, the research: * Now forms the foundations of the first attempt at “Social Asset” planning within the Wet Tropics Regional NRM Plan review; * Is assisting Local government at regional scale to consider aspects of climate change adaptation in emerging planning scheme/community planning processes; * Has partnered the State government (via the Department of Infrastructure and Planning and Regional Managers Coordination Network Chair) in progressing the Climate Change adaptation agenda set down within the FNQ 2031 Regional Plan; * Is informing new approaches to report on community resilience within the GBRMPA Outlook reporting framework; and * Now forms the foundation for the region’s wider climate change adaptation priorities in the Regional Roadmap developed by Regional Development Australia. Through the auspices of Regional Development Australia, the outcomes of the research will now inform emerging negotiations concerning a wider package of climate change adaptation priorities with State and Federal governments. Next stage research priorities are also being developed to enable an ongoing alliance between researchers and the region’s climate change response.
Resumo:
Settlements and communities in the Great Barrier Reef (GBR) are highly vulnerable to climate change and face an uncertain social, economic and environmental future. The concept of community resilience is gaining momentum as stakeholders and institutions seek to better understand the social, economic and governance factors which affect community capacity to adapt in the face of climate change. This paper defines a framework to benchmark community resilience and applies it to a case study in the Wet Tropics in tropical Queensland within the GBR catchment. It finds that rural, indigenous and some urban populations are highly vulnerable and sensitive to climate change, particularly in terms of economic vitality, community knowledge, aspirations and capacity for adaptation. Without early and substantive action, this could result in declining social and economic wellbeing and natural resource health. Capacity to manage the possible shocks associated with the impacts of climate change and extreme climatic events is emerging and needs to be carefully fostered and further developed to achieve broader community resilience outcomes. Better information about what actions, policies and arrangements build community resilience and mobilise adaptive capacity in the face of climate change is needed.
Resumo:
Social resilience concepts are gaining momentum in environmental planning through an emerging understanding of the socio-ecological nature of biophysical systems. There is a disconnect, however, between these concepts and the sociological and psychological literature related to social resilience. Further still, both schools of thought are not well connected to the concepts of social assessment (SA) and social impact assessment (SIA) that are the more standard tools supporting planning and decision-making. This raises questions as to how emerging social resilience concepts can translate into improved SA/SIA practices to inform regional-scale adaptation. Through a review of the literature, this paper suggests that more cross-disciplinary integration is needed if social resilience concepts are to have a genuine impact in helping vulnerable regions tackle climate change.
Resumo:
This thesis explored how biophilic urbanism, or the integration of natural features into increasingly dense urban environments, has become mainstream in cities around the world. Fourteen factors uncovered through a case study investigation provide insight for decision makers and change agents in Australia to use biophilic urbanism to address impacts of population growth, climate change and resource shortages. The thesis uses an inductive research approach to explore how barriers to the integration of multi-functional vegetated and water design elements into the built environment, such that these become and standard inclusions in urban design and development processes.
Resumo:
Urban green infrastructure can help cities adapt to climate change. Spatial planning can play an important role in utilizing green infrastructure for adaptation. Yet climate change risks represent a different sort of challenge for planning institutions. This paper aims to address two issues arising from this challenge. First, it defines the concept of green infrastructure within the context of climate adaptation. Second, it identifies and puts into perspective institutional barriers to adopting green infrastructure for climate adaptation, including path dependence. We begin by arguing that there is growing confusion among planners and policy makers about what constitutes green infrastructure. Definitional ambiguity may contribute to inaction on climate change adaptation, because it muddies existing programs and initiatives that are to do with green-space more broadly, which in turn feeds path dependency. We then report empirical findings about how planners perceive the institutional challenge arising from climate change and the adoption of green infrastructure as an adaptive response. The paper concludes that spatial planners generally recognize multiple rationales associated with green infrastructure. However they are not particularly keen on institutional innovation and there is a tendency for path dependence. We propose a conceptual model that explicitly recognizes such institutional factors. This paper contributes to the literature by showing that agency and institutional dimensions are a limiting factor in advancing the concept of green infrastructure within the context of climate change adaptation.
Resumo:
Climate has been, throughout modern history, a primary attribute for attracting residents to the “Sunshine States” of Florida (USA) and Queensland (Australia). The first major group of settlers capitalized on the winter growing season to support a year-‐round agricultural economy. As these economies developed, the climate attracted tourism and retirement industries. Yet as Florida and Queensland have blossomed under beneficial climates, the stresses acting on the natural environment are exacting a toll. Southeast Florida and eastern Queensland are among the most vulnerable coastal metropolitan areas in the world. In these places the certainty of sea level rise is measurable with impacts, empirically observable, that will continue to increase regardless of any climate change mitigation.1 The cities of the subtropics share a series of paradoxes relating to climate, resources, environment, and culture. As the subtropical climate entices new residents and visitors there are increasing costs associated with urban infrastructure and the ravages of violent weather. The carefree lifestyle of subtropical cities is increasingly dependent on scarce water and energy resources and the flow of tangible goods that support a trade economy. The natural environment is no longer exploitable as the survival of the human environment is contingent upon the ability of natural ecosystems to absorb the impact of human actions. The quality of subtropical living is challenged by the mounting pressures of population growth and rapid urbanization yet urban form and contemporary building design fail to take advantage of the subtropical zone’s natural attributes of abundant sunshine, cooling breezes and warm temperatures. Yet, by building a global network of local knowledge, subtropical cities like Brisbane, the City of Gold Coast and Fort Lauderdale, are confidently leading the way with innovative and inventive solutions for building resiliency and adaptation to climate change. The Centre for Subtropical Design at Queensland University of Technology organized the first international Subtropical Cities conference in Brisbane, Australia, where the “fault-‐lines” of subtropical cities at breaking points were revealed. The second conference, held in 2008, shed a more optimistic light with the theme "From fault-‐lines to sight-‐lines -‐ subtropical urbanism in 20-‐20" highlighting the leadership exemplified in the vitality of small and large works from around the subtropical world. Yet beyond these isolated local actions the need for more cooperation and collaboration was identified as the key to moving beyond the problems of the present and foreseeable future. The spirit of leadership and collaboration has taken on new force, as two institutions from opposite sides of the globe joined together to host the 3rd international conference Subtropical Cities 2011 -‐ Subtropical Urbanism: Beyond Climate Change. The collaboration between Florida Atlantic University and the Queensland University of Technology to host this conference, for the first time in the United States, forges a new direction in international cooperative research to address urban design solutions that support sustainable behaviours, resiliency and adaptation to sea level rise, green house gas (GHG) reduction, and climate change research in the areas of architecture and urban design, planning, and public policy. With southeast Queensland and southern Florida as contributors to this global effort among subtropical urban regions that share similar challenges, opportunities, and vulnerabilities our mutual aim is to advance the development and application of local knowledge to the global problems we share. The conference attracted over 150 participants from four continents. Presentations by authors were organized into three sub-‐themes: Cultural/Place Identity, Environment and Ecology, and Social Economics. Each of the 22 papers presented underwent a double-‐blind peer review by a panel of international experts among the disciplines and research areas represented. The Centre for Subtropical Design at the Queensland University of Technology is leading Australia in innovative environmental design with a multi-‐disciplinary focus on creating places that are ‘at home’ in the warm humid subtropics. The Broward Community Design Collaborative at Florida Atlantic University's College for Design and Social Inquiry has built an interdisciplinary collaboration that is unique in the United States among the units of Architecture, Urban and Regional Planning, Social Work, Public Administration, together with the College of Engineering and Computer Science, the College of Science, and the Center for Environmental Studies, to engage in funded action research through design inquiry to solve the problems of development for urban resiliency and environmental sustainment. As we move beyond debates about climate change -‐ now acting upon us -‐ the subtropical urban regions of the world will continue to convene to demonstrate the power of local knowledge against global forces, thereby inspiring us as we work toward everyday engagement and action that can make our cities more livable, equitable, and green.
Resumo:
This research seeks to demonstrate the ways in which urban design factors, individually and in various well-considered arrangements, stimulate and encourage social activities in Brisbane’s public squares through the mapping and analysis of user behaviour. No design factors contribute to public space in isolation, so the combinations of different design factors, contextual and social impacts as well as local climate are considered to be highly influential to the way in which Brisbane’s public engages with public space. It is this local distinctiveness that this research seeks to ascertain. The research firstly pinpoints and consolidates the design factors identified and recommended in existing literature and then maps the identified factors as they are observed at case study sites in Brisbane. This is then set against observational mappings of the site’s corresponding user activities and engagement. These mappings identify a number of patterns of behaviour; pertinently that “activated” areas of social gathering actively draw people in, and the busier a space is, both the frequency and duration of people lingering in the space increases. The study finds that simply providing respite from the urban environment (and/or weather conditions) does not adequately encourage social interaction and that people friendly design factors can instigate social activities which, if coexisting in a public space, can themselves draw in further users of the space. One of the primary conclusions drawn from these observations is that members of the public in Brisbane are both actively and passively social and often seek out locations where “people-watching” and being around other members of the public (both categorised as passive social activities) are facilitated and encouraged. Spaces that provide respite from the urban environment but that do not sufficiently accommodate social connections and activities are less favourable and are often left abandoned despite their comparable tranquillity and available space.
Resumo:
Biophilic urbanism, or urban design that reflects humanity’s innate need for nature, stands to make significant contributions to a range of national, state and local government policies related to climate change mitigation and adaptation, by investigating ways in which nature can be integrated into, around and on top of buildings. Potential benefits of such design include reducing the heat island effect, reducing energy consumption for thermal control, enhancing urban biodiversity, improving well being and productivity, improving water cycle management, and assisting in the response to growing needs for densification and revitalisation of cities. This report will give an overview of the concept of biophilia and consider enablers and disablers to its application to urban planning and design. The paper will present findings from stakeholder engagement and a series of detailed case studies, related to a consideration of the economics of the use of biophilic elements (direct and indirect).
Resumo:
he composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden.
Resumo:
Background Understanding the relationship between extreme weather events and childhood hand, foot and mouth disease (HFMD) is important in the context of climate change. This study aimed to quantify the relationship between extreme precipitation and childhood HFMD in Hefei, China, and further, to explore whether the association varied across urban and rural areas. Methods Daily data on HFMD counts among children aged 0–14 years from 2010 January 1st to 2012 December 31st were retrieved from Hefei Center for Disease Control and Prevention. Daily data on mean temperature, relative humidity and precipitation during the same period were supplied by Hefei Bureau of Meteorology. We used a Poisson linear regression model combined with a distributed lag non-linear model to assess the association between extreme precipitation (≥ 90th precipitation) and childhood HFMD, controlling for mean temperature, humidity, day of week, and long-term trend. Results There was a statistically significant association between extreme precipitation and childhood HFMD. The effect of extreme precipitation on childhood HFMD was the greatest at six days lag, with a 5.12% (95% confident interval: 2.7–7.57%) increase of childhood HFMD for an extreme precipitation event versus no precipitation. Notably, urban children and children aged 0–4 years were particularly vulnerable to the effects of extreme precipitation. Conclusions Our findings indicate that extreme precipitation may increase the incidence of childhood HFMD in Hefei, highlighting the importance of protecting children from forthcoming extreme precipitation, particularly for those who are young and from urban areas.
Resumo:
Purpose – The purpose of this paper is to consider how biophilic urbanism complements and potentially enhances approaches for the built environment profession to holistically integrate nature into cities. Urban nature – also referred to as urban greening and green infrastructure – has increasingly been considered from many perspectives to address challenges such as population pressures, climate change and resource shortages. Within this context, the authors highlight how “biophilic urbanism” complements and may enhance approaches and efforts for urban greening. Design/methodology/approach – The paper provides a review of existing literature in “urban nature” to clarify and discuss the concept of biophilic urbanism. Drawing on this literature review, the authors present a systematic clustering and scaling of “biophilic elements” that could facilitate responding to twenty-first century challenges. Findings – Biophilic urbanism can be applied at multiple scales in urban environments, through a range of multi-functional features that address the pervasive false dichotomy of urban development and environmental protection. Biophilic urbanism can complement urban greening efforts to enable a holistic approach, which is conducive to comprehensive, intentional and strategic urban greening. Originality/value – This paper situates the emerging concept of biophilic urbanism within existing research from multiple disciplines, providing insight for how this can be applied in practice, particularly to the topical challenge of “urban renewal”.
Resumo:
Inadvertent climate modification has led to an increase in urban temperatures compared to the surrounding rural area. The main reason for the temperature rise is the altered energy portioning of input net radiation to heat storage and sensible and latent heat fluxes in addition to the anthropogenic heat flux. The heat storage flux and anthropogenic heat flux have not yet been determined for Helsinki and they are not directly measurable. To the contrary, turbulent fluxes of sensible and latent heat in addition to net radiation can be measured, and the anthropogenic heat flux together with the heat storage flux can be solved as a residual. As a result, all inaccuracies in the determination of the energy balance components propagate to the residual term and special attention must be paid to the accurate determination of the components. One cause of error in the turbulent fluxes is the fluctuation attenuation at high frequencies which can be accounted for by high frequency spectral corrections. The aim of this study is twofold: to assess the relevance of high frequency corrections to water vapor fluxes and to assess the temporal variation of the energy fluxes. Turbulent fluxes of sensible and latent heat have been measured at SMEAR III station, Helsinki, since December 2005 using the eddy covariance technique. In addition, net radiation measurements have been ongoing since July 2007. The used calculation methods in this study consist of widely accepted eddy covariance data post processing methods in addition to Fourier and wavelet analysis. The high frequency spectral correction using the traditional transfer function method is highly dependent on relative humidity and has an 11% effect on the latent heat flux. This method is based on an assumption of spectral similarity which is shown not to be valid. A new correction method using wavelet analysis is thus initialized and it seems to account for the high frequency variation deficit. Anyhow, the resulting wavelet correction remains minimal in contrast to the traditional transfer function correction. The energy fluxes exhibit a behavior characteristic for urban environments: the energy input is channeled to sensible heat as latent heat flux is restricted by water availability. The monthly mean residual of the energy balance ranges from 30 Wm-2 in summer to -35 Wm-2 in winter meaning a heat storage to the ground during summer. Furthermore, the anthropogenic heat flux is approximated to be 50 Wm-2 during winter when residential heating is important.
Resumo:
Urbanization is becoming increasingly important in terms of climate change and ecosystem functionality worldwide. We are only beginning to understand how the processes of urbanization influence ecosystem dynamics and how peri-urban environments contribute to climate change. Brisbane in South East Queensland (SEQ) currently has the most extensive urban sprawl of all Australian cities. This leads to substantial land use changes in urban and peri-urban environments and the subsequent gaseous emissions from soils are to date neglected for IPCC climate change estimations. This research examines how land use change effects methane (CH4) and nitrous oxide (N2O) fluxes from peri-urban soils and consequently influences the Global Warming Potential (GWP) of rural ecosystems in agricultural use undergoing urbanization. Therefore, manual and fully automated static chamber measurements determined soil gas fluxes over a full year and an intensive sampling campaign of 80 days after land use change. Turf grass, as the major peri-urban land cover, increased the GWP by 415 kg CO2-e ha 1 over the first 80 days after conversion from a well-established pasture. This results principally from increased daily average N2O emissions of 0.5 g N2O ha-1 d-1 from the pasture to 18.3 g N2O ha-1 d-1 from the turf grass due to fertilizer application during conversion. Compared to the native dry sclerophyll eucalypt forest, turf grass establishment increases the GWP by another 30 kg CO2-e ha 1. The results presented in this study clearly indicate the substantial impact of urbanization on soil-atmosphere gas exchange in form of non-CO2 greenhouse gas emissions particularly after turf grass establishment.
Resumo:
We treat urban stormwater as a problem as it causes flooding, transports pollutants and degrades the ecosystem health of waterways (Goonetilleke et al., 2014). Municipal authorities devote a significant component of their budget to capture and remove stormwater from urban areas as rapidly as possible. Unfortunately, it is a largely unappreciated fact that urban stormwater is the last available uncommitted water resource for our cities as the demand for potable water escalates due to growing urbanisation, industrialisation and higher living standards.
Resumo:
It is a transforming experience to imagine that in 50 years, our current built environment might look as foreign to our grandchildren as the computers of the 1960s look to us today. We can already see emerging attempts to create cities that are resilient and liveable in the face of physical stresses including population growth, increasing climate variability, resource shortages and pollution. The capacity for transforming every aspect of development towards resilience and liveability goals is profoundly exciting, from heating and cooling through to energy generation, water reticulation, food production, transportation, communication and recreational spaces...