980 resultados para Tyrosine recombinase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell activation and expansion is essential for immune response against foreign antigens. However, uncontrolled T cell activity can be manifested as a number of lymphoid derived diseases such as autoimmunity, graft versus host disease, and lymphoma. The purpose of this research was to test the central hypothesis that the Jak3/Stat5 pathway is critical for T cell function. To accomplish this objective, two novel Jak3 inhibitors, AG490 and PNU156804, were identified and their effects characterized on Jak3/Stat5 activation and T cell growth. Inhibition of Jak3 selectively disrupted primary human T lymphocyte growth in response to Interleukin-2 (IL-2), as well as other γ c cytokine family members including IL-4, IL-7, IL-9, and IL-15. Inhibition of Jak3 ablated IL-2 induced Stat5 but not TNF-α mediated NF-κβ DNA binding. Loss of Jak3 activity did not affect T cell receptor mediated signals including activation of p56Lck and Zap70, or IL-2 receptor a chain expression. To examine the effects of Jak3/Stat5 inhibition within a mature immune system, we employed a rat heart allograft model of Lewis (RT1 1) to ACI (RT1a). Heart allograft survival was significantly prolonged following Jak3/Stat5 inhibition when rats were treated with AG490 (20mg/kg) or PNU156804 (80mg/kg) compared to non-treated control animals. This effect was synergistically potentiated when Jak3 inhibitors were used in combination with a signal 1/2 disrupter, cyclosporine, but only additively potentiated with another signal 3 inhibitor, rapamycin. This suggested that sequential inhibition of T cell function is more effective. To specifically address the role of Stat5 in maintaining T cell activity, novel Stat5 antisense oligonucleotides were synthesized and characterized in vitro. Primary human T cells and T-cell tumor lines treated with Stat5 antisense oligonucleotide (7.5 μM) rapidly underwent apoptosis, while no changes in cell cycle were observed as measured by FACS analysis utilizing Annexin-V-Fluorescein and Propidium iodide staining. Evidence is provided to suggest that caspase 8 and 9 pathways mediate this event. Thus, Stat5 may act rather as a negative regulator of apoptotic signals and not as a positive regulator of cell cycle as previously proposed. We conclude that the Jak3/Stat5 pathway is critical for γc cytokine mediated gene expression necessary for T cell expansion and normal immune function and represents an therapeutically relevant effector pathway to combat T cell derived disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Philadelphia chromosome (Ph)-positive chronic myeloid leukemia is caused by a clonal myeloproliferative expansion of malignant primitive hematopoietic progenitor cells. The Ph results from the reciprocal translocation of the ends of chromosome 9 and 22, which generate Bcr-Abl fusion proteins. The Bcr-Abl proteins possess a constitutively activated Abl tyrosine kinase, which is the driving force responsible for causing leukemia. The activated Bcr-Abl tyrosine kinase stimulates multiple signal transduction pathway affecting growth, differentiation and survival of cells. It is known that the Bcr-Abl tyrosine kinase activates several signaling proteins including Stat5, which is a member of the Jak/Stat pathway that is activated by cytokines that control the growth and differentiation of normal hematopoietic cells. Our laboratory was the first one to report that Jak2 tyrosine kinase is activated in a human Bcr-Abl positive hematopoietic cell line. In this thesis, we further investigated the activation of Jak2 by Bcr-Abl. We found that Jak2 is activated not only in cultured Bcr-abl positive cell lines but also in blood cells from CML blast crisis patients. We also demonstrated that SH2 domain of Bcr-Abl is required for efficient activation Jak2. We further showed that Jak2 binds to the C-terminal domain of Bcr-Abl; tyrosine residue 1007, which is critical for Jak2 activation, is phosphorylated by Bcr-Abl. We searched downstream targets of Jak2 in Bcr-Abl positive cells. We treated Bcr-Abl positive cells with a Jak2 kinase inhibitor AG490 and found that c-Myc protein expression is inhibited by AG490. We further demonstrated that Jak2 inhibitor AG490 not only inhibit C-MYC transcription but also protect c-Myc protein from proteasome-dependent degradation. We also showed that AG490 did not affect Bcr-Abl kinase activity and Stat5 activation and its downstream target Bcl-xL expression. AG490 also induced apoptosis of Bcr-Abl positive cells, similar to Bcr-Abl kinase inhibitor STI571 (also termed Gliveec, a very effective drug for CML), but unlike STI571 the apoptosis effects induced by AG490 can not be rescued by IL-3 containing WEHI conditioned medium. We further established several Bcr-Abl positive clones that express a kinase-inactive Jak2 and found that these clones had reduced tumor formation in nude mice assays. Taken together, these results establish that Jak2 is activated in Bcr-Abl positive CML cells and it is required for c-Myc induction and the oncogenic effects of Bcr-Abl. Furthermore, Jak2 and Stat5 are two independent targets of Bcr-Abl. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH) expression increases in adrenal chromaffin cells treated with the nicotinic agonist, dimethylphenylpiperazinium (DMPP; 1 μM). We are using this response as a model of the changes in TH level that occur during increased cholinergic neural activity. Here we report a 4-fold increase in TH mRNA half-life in DMPP-treated chromaffin cells that is apparent when using a pulse-chase analysis to measure TH mRNA half-life. No increase is apparent using actinomycin D to measure half-life, indicating a requirement for ongoing transcription. Characterization of protein binding to the TH 3′UTR using RNA electro-mobility shift assays show the presence of two complexes both of which are increased by DMPP-treatment. The faster migrating complex (FMC) increases 2.5-fold and the slower migrating complex (SMC) increases 1.5-fold. Separation of UV crosslinked RNA-protein complexes on SDS polyacrylamide gels shows FMC to contain a single protein whereas SMC contains two proteins. Northwesterns yielded similar results. Transfection studies reveal an increase in expression of the full-length TH transcript due to DMPP-treatment similar to that of endogenous TH mRNA. This finding suggests the increased expression is due primarily to mRNA stabilization. Transfection of luciferase reporter constructs containing regions of the TH 3′UTR reveal only the full-length 3′UTR influenced the expression level of reporter transcripts. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SH2 domain-containing tyrosine phosphatase Shp2 plays a pivotal role during the gastrulation of vertebrate embryos. However, because of the complex phenotype observed in mouse mutant embryos, the precise role of Shp2 during development is unclear. To define the specific functions of this phosphatase, Shp2 homozygous mutant embryonic stem cells bearing the Rosa-26 LacZ transgene were isolated and used to perform a chimeric analysis. Here, we show that Shp2 mutant cells amass in the tail bud of embryonic day 10.5 chimeric mouse embryos and that this accumulation begins at the onset of gastrulation. At this early stage, Shp2 mutant cells collect in the primitive streak of the epiblast and thus show deficiencies in their contribution to the mesoderm lineage. In high-contribution chimeras, we show that overaccumulation of Shp2 mutant cells at the posterior end of the embryo results in two abnormal phenotypes: spina bifida and secondary neural tubes. Consistent with a failure to undergo morphogenic movements at gastrulation, Shp2 is required for embryo fibroblast cells to mount a positive chemotactic response to acidic fibroblast growth factor in vitro. Our results demonstrate that Shp2 is required at the initial steps of gastrulation, as nascent mesodermal cells form and migrate away from the primitive streak. The aberrant behavior of Shp2 mutant cells at gastrulation may result from their inability to properly respond to signals initiated by fibroblast growth factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The G protein-coupled m1 and m3 muscarinic acetylcholine receptors increase tyrosine phosphorylation of several proteins, including the focal adhesion-associated proteins paxillin and focal adhesion kinase (FAK), but the mechanism is not understood. Activation of integrins during adhesion of cells to extracellular matrix, or stimulation of quiescent cell monolayers with G protein-coupled receptor ligands including bradykinin, bombesin, endothelin, vasopressin, and lysophosphatidic acid, also induces tyrosine phosphorylation of paxillin and FAK and formation of focal adhesions. These effects are generally independent of protein kinase C but are inhibited by agents that prevent cytoskeletal assembly or block activation of the small molecular weight G protein Rho. This report demonstrates that tyrosine phosphorylation of paxillin and FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is inhibited by soluble peptides containing the arginine–glycine–aspartate motif (the recognition site for integrins found in adhesion proteins such as fibronectin) but is unaffected by peptides containing the inactive sequence arginine–glycine–glutamate. Tyrosine phosphorylation elicited by carbachol, but not by cell adhesion to fibronectin, is reduced by the protein kinase C inhibitor GF 109203X. The response to carbachol is dependent on the presence of fibronectin. Moreover, immunofluorescence studies show that carbachol treatment induces formation of stress fibers and focal adhesions. These results suggest that muscarinic receptor stimulation activates integrins via a protein kinase C-dependent mechanism. The activated integrins transmit a signal into the cell’s interior leading to tyrosine phosphorylation of paxillin and FAK. This represents a novel mechanism for regulation of tyrosine phosphorylation by muscarinic receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular signals governing cellular proliferation and developmental progression during lymphocyte development are incompletely understood. The tyrosine kinase Blk is expressed preferentially in the B lineage, but its function in B cell development has been largely unexplored. We have generated transgenic mice expressing constitutively active Blk [Blk(Y495F)] in the B and T lymphoid compartments. Expression of Blk(Y495F) in the B lineage at levels similar to that of endogenous Blk induced B lymphoid tumors of limited clonality, whose phenotypes are characteristic of B cell progenitors at the proB/preB-I to preB-II transition. Expression of constitutively active Blk in the T lineage resulted in the appearance of clonal, thymic lymphomas composed of intermediate single positive cells. Taken together, these results indicate that specific B and T cell progenitor subsets are preferentially susceptible to transformation by Blk(Y495F) and suggest a role for Blk in the control of proliferation during B cell development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In kidney epithelial cells, an angiotensin II (Ang II) type 2 receptor subtype (AT2) is linked to a membrane-associated phospholipase A2 (PLA2) and the mitogen-activated protein kinase (MAPK) superfamily. However, the intervening steps in this linkage have not been determined. The aim of this study was to determine whether arachidonic acid mediates Ang II’s effect on p21ras and if so, to ascertain the signaling mechanism(s). We observed that Ang II activated p21ras and that mepacrine, a phospholipase A2 inhibitor, blocked this effect. This activation was also inhibited by PD123319, an AT2 receptor antagonist but not by losartan, an AT1 receptor antagonist. Furthermore, Ang II caused rapid tyrosine phosphorylation of Shc and its association with Grb2. Arachidonic acid and linoleic acid mimicked Ang II-induced tyrosine phosphorylation of Shc and activation of p21ras. Moreover, Ang II and arachidonic acid induced an association between p21ras and Shc. We demonstrate that arachidonic acid mediates linkage of a G protein-coupled receptor to p21ras via Shc tyrosine phosphorylation and association with Grb2/Sos. These observations have important implications for other G protein-coupled receptors linked to a variety of phospholipases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquitously expressed nonreceptor tyrosine kinase c-Abl contains three nuclear localization signals, however, it is found in both the nucleus and the cytoplasm of proliferating fibroblasts. A rapid and transient loss of c-Abl from the nucleus is observed upon the initial adhesion of fibroblasts onto a fibronectin matrix, suggesting the possibility of nuclear export [Lewis, J., Baskaran, R., Taagepera, S., Schwartz, M. & Wang, J. (1996) Proc. Natl. Acad. Sci. USA 93, 15174–15179]. Here we show that the C terminus of c-Abl does indeed contain a functional nuclear export signal (NES) with the characteristic leucine-rich motif. The c-Abl NES can functionally complement an NES-defective HIV Rev protein (RevΔ3NI) and can mediate the nuclear export of glutathione-S-transferase. The c-Abl NES function is sensitive to the nuclear export inhibitor leptomycin B. Mutation of a single leucine (L1064A) in the c-Abl NES abrogates export function. The NES-mutated c-Abl, termed c-Abl NES(−), is localized exclusively to the nucleus. Treatment of cells with leptomycin B also leads to the nuclear accumulation of wild-type c-Abl protein. The c-Abl NES(−) is not lost from the nucleus when detached fibroblasts are replated onto fibronectin matrix. Taken together, these results demonstrate that c-Abl shuttles continuously between the nucleus and the cytoplasm and that the rate of nuclear import and export can be modulated by the adherence status of fibroblastic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decrement in dopamine levels exceeds the loss of dopaminergic neurons in Parkinson’s disease (PD) patients and experimental models of PD. This discrepancy is poorly understood and may represent an important event in the pathogenesis of PD. Herein, we report that the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), is a selective target for nitration following exposure of PC12 cells to either peroxynitrite or 1-methyl-4-phenylpyridiniun ion (MPP+). Nitration of TH also occurs in mouse striatum after MPTP administration. Nitration of tyrosine residues in TH results in loss of enzymatic activity. In the mouse striatum, tyrosine nitration-mediated loss in TH activity parallels the decline in dopamine levels whereas the levels of TH protein remain unchanged for the first 6 hr post MPTP injection. Striatal TH was not nitrated in mice overexpressing copper/zinc superoxide dismutase after MPTP administration, supporting a critical role for superoxide in TH tyrosine nitration. These results indicate that tyrosine nitration-induced TH inactivation and consequently dopamine synthesis failure, represents an early and thus far unidentified biochemical event in MPTP neurotoxic process. The resemblance of the MPTP model with PD suggests that a similar phenomenon may occur in PD, influencing the severity of parkisonian symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A colonization mutant of the efficient root-colonizing biocontrol strain Pseudomonas fluorescens WCS365 is described that is impaired in competitive root-tip colonization of gnotobiotically grown potato, radish, wheat, and tomato, indicating a broad host range mutation. The colonization of the mutant is also impaired when studied in potting soil, suggesting that the defective gene also plays a role under more natural conditions. A DNA fragment that is able to complement the mutation for colonization revealed a multicistronic transcription unit composed of at least six ORFs with similarity to lppL, lysA, dapF, orf235/233, xerC/sss, and the largely incomplete orf238. The transposon insertion in PCL1233 appeared to be present in the orf235/233 homologue, designated orf240. Introduction of a mutation in the xerC/sss homologue revealed that the xerC/sss gene homologue rather than orf240 is crucial for colonization. xerC in Escherichia coli and sss in Pseudomonas aeruginosa encode proteins that belong to the λ integrase family of site-specific recombinases, which play a role in phase variation caused by DNA rearrangements. The function of the xerC/sss homologue in colonization is discussed in terms of genetic rearrangements involved in the generation of different phenotypes, thereby allowing a bacterial population to occupy various habitats. Mutant PCL1233 is assumed to be locked in a phenotype that is not well suited to compete for colonization in the rhizosphere. Thus we show the importance of phase variation in microbe–plant interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrimeric G proteins and tyrosine kinases are two major cellular signal transducers. Although G proteins are known to activate tyrosine kinases, the activation mechanism is not clear. Here, we demonstrate that G protein Gqα binds directly to the nonreceptor Bruton’s tyrosine kinase (Btk) to a region composed of a Tec-homology (TH) domain and a sarcoma virus tyrosine kinase (Src)-homology 3 (SH3) domain both in vitro and in vivo. Only active GTP-bound Gqα, not inactive GDP-bound Gqα, can bind to Btk. Mutations of Btk that disrupt its ability to bind Gqα also eliminate Btk stimulation by Gqα, suggesting that this interaction is important for Btk activation. Remarkably, the structure of this TH (including a proline-rich sequence) -SH3 fragment of the Btk family of tyrosine kinases shows an intramolecular interaction. Furthermore, the crystal structure of the Src family of tyrosine kinases reveals that the intramolecular interaction of SH3 and its ligand is the major determining factor keeping the kinase inactive. Thus, we propose an activation model that entails binding of Gqα to the TH-SH3 region, thereby disrupting the TH-SH3 intramolecular interaction and activating Btk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian capping enzymes are bifunctional proteins with both RNA 5′-triphosphatase and guanylyltransferase activities. The N-terminal 237-aa triphosphatase domain contains (I/V)HCXXGXXR(S/T)G, a sequence corresponding to the conserved active-site motif in protein tyrosine phosphatases (PTPs). Analysis of point mutants of mouse RNA 5′-triphosphatase identified the motif Cys and Arg residues and an upstream Asp as required for activity. Like PTPs, this enzyme was inhibited by iodoacetate and VO43− and independent of Mg2+, providing additional evidence for phosphate removal from RNA 5′ ends by a PTP-like mechanism. The full-length, 597-aa mouse capping enzyme and the C-terminal guanylyltransferase fragment (residues 211–597), unlike the triphosphatase domain, bound poly (U) and were nuclear in transfected cells. RNA binding was increased by GTP, and a guanylylation-defective, active-site mutant was not affected. Ala substitution at positions required for the formation of the enzyme-GMP capping intermediate (R315, R530, K533, or N537) also eliminated poly (U) binding, while proteins with conservative substitutions at these sites retained binding but not guanylyltransferase activity. These results demonstrate that the guanylyltransferase domain of mammalian capping enzyme specifies nuclear localization and RNA binding. Association of capping enzyme with nascent transcripts may act in synergy with RNA polymerase II binding to ensure 5′ cap formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure of cells to protein tyrosine phosphatase (PTP) inhibitors causes an increase in the phosphotyrosine content of many cellular proteins. However, the level at which the primary signaling event is affected is still unclear. We show that Jaks are activated by tyrosine phosphorylation in cells that are briefly exposed to the PTP inhibitor pervanadate (PV), resulting in tyrosine phosphorylation and functional activation of Stat6 (in addition to other Stats). Mutant cell lines that lack Jak1 activity fail to support PV-mediated [or interleukin 4 (IL-4)-dependent] activation of Stat6 but can be rescued by complementation with functional Jak1. The docking sites for both Jak1 and Stat6 reside in the cytoplasmic domain of the IL-4 receptor α-chain (IL-4Rα). The glioblastoma-derived cell lines T98G, GRE, and M007, which do not express the IL-4Rα chain, fail to support Stat6 activation in response to either IL-4 or PV. Complementation of T98G cells with the IL-4Rα restores both PV-mediated and IL-4-dependent Stat6 activation. Murine L929 cells, which do not express the γ common chain of the IL-4 receptor, support PV-mediated but not IL-4-dependent Stat6 activation. Thus, Stat6 activation by PV is an IL-4Rα-mediated, Jak1-dependent event that is independent of receptor dimerization. We propose that receptor-associated constitutive PTP activity functions to down-regulate persistent, receptor-linked kinase activity. Inhibition or deletion of PTP activity results in constitutive activation of cytokine signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of the neuromuscular junction (NMJ) depends upon a nerve-derived protein, agrin, acting by means of a muscle-specific receptor tyrosine kinase, MuSK, as well as a required accessory receptor protein known as MASC. We report that MuSK does not merely play a structural role by demonstrating that MuSK kinase activity is required for inducing acetylcholine receptor (AChR) clustering. We also show that MuSK is necessary, and that MuSK kinase domain activation is sufficient, to mediate a key early event in NMJ formation—phosphorylation of the AChR. However, MuSK kinase domain activation and the resulting AChR phosphorylation are not sufficient for AChR clustering; thus we show that the MuSK ectodomain is also required. These results indicate that AChR phosphorylation is not the sole trigger of the clustering process. Moreover, our results suggest that, unlike the ectodomain of all other receptor tyrosine kinases, the MuSK ectodomain plays a required role in addition to simply mediating ligand binding and receptor dimerization, perhaps by helping to recruit NMJ components to a MuSK-based scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An early stage in thymocyte development, after rearrangement of the β chain genes of the T cell receptor (TCR), involves expression of the pre-TCR complex and accompanying differentiation of CD4−CD8− double negative (DN) cells to CD4+CD8+ double positive (DP) cells. The ZAP-70 and Syk tyrosine kinases each contain two N-terminal SH2 domains that bind phosphorylated motifs in antigen receptor subunits and are implicated in pre-T receptor signaling. However, mice deficient in either ZAP-70 or Syk have no defect in the formation of DP thymocytes. Here we show that, in mice lacking both Syk and ZAP-70, DN thymocytes undergo β chain gene rearrangement but fail to initiate clonal expansion and are incapable of differentiating into DP cells after expression of the pre-TCR. These data suggest that the ZAP-70 and Syk tyrosine kinases have crucial but overlapping functions in signaling from the pre-TCR and hence in early thymocyte development.