933 resultados para Type 6 Secretion systems
Resumo:
This article presents the latest print results at less than 100 microns pitch obtained in stencil printing type 6 and 7 leadfree solder pastes and conductive adhesives. The advantages of the microengineered stencil are presented and compared with other bonding technologies. Characterisation of the print deposits is presented and future applications of stencil printing are described.
Resumo:
For in vitro studies of airway pathophysiology, primary epithelial cells have many advantages over immortalised cell lines. Nasal epithelial cells are easier to obtain than bronchial epithelial cells and can be used as an alternative for in vitro studies. Our objective was to compare nasal and bronchial epithelial cells from subjects with COPD to establish if these cells respond similarly to pro-inflammatory stimuli. Cell cultures from paired nasal and bronchial brushings (21 subjects) were incubated with cigarette smoke extract (CSE) prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide. IL-6 and IL-8 were measured by ELISA and Toll-like receptor 4 (TLR-4) message and expression by RT-PCR and FACS respectively. IL-8 release correlated significantly between the two cell types. IL-6 secretion was significantly less from bronchial compared to nasal epithelial cells and secreted concentrations did not correlate. A 4 h CSE incubation was immunosuppressive for both nasal and bronchial cells, however prolonged incubation for 24 h was pro-inflammatory solely for the nasal cells. CSE reduced TLR-4 expression in bronchial cells only after 24 h, and was without effect on mRNA expression. In subjects with COPD, nasal epithelial cells cannot substitute for in vitro bronchial epithelial cells in airway inflammation studies. © 2012 Comer et al.
Resumo:
Burkholderia cenocepacia, a member of the Burkholderia cepacia complex, is an opportunistic pathogen that causes devastating infections in patients with cystic fibrosis. The ability of B. cenocepacia to survive within host cells could contribute significantly to its virulence in immunocompromised patients. In this study, we explored the mechanisms that enable B. cenocepacia to survive inside macrophages. We found that B. cenocepacia disrupts the actin cytoskeleton of infected macrophages, drastically altering their morphology. Submembranous actin undergoes depolymerization, leading to cell retraction. The bacteria perturb actin architecture by inactivating Rho family GTPases, particularly Rac1 and Cdc42. GTPase inactivation follows internalization of viable B. cenocepacia and compromises phagocyte function: macropinocytosis and phagocytosis are markedly inhibited, likely impairing the microbicidal and antigen-presenting capability of infected macrophages. The type VI secretion system is essential for the bacteria to elicit these changes. This is the first report demonstrating inactivation of Rho family GTPases by a member of the B. cepacia complex.
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1ß, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1ß processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1ß release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1ß release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1ß response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1ß processing and release.
Resumo:
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. Although much attention has been given to the biological effects of its lipid A portion, a great body of evidence indicates that its O chain polysaccharide (O antigen) portion plays an important role in the bacterium-host interplay. In this work we have studied in-depth the role of the O antigen in Yersinia enterocolitica serotype O:8 pathogenesis. We made a detailed virulence analysis of three mutants having different O antigen phenotypes: (i) LPS with no O antigen (rough mutant); (ii) LPS with one O unit (semirough mutant) and (iii) LPS with random distribution of O antigen chain lengths. We demonstrated that these LPS O antigen mutants were attenuated in virulence regardless of the infection route used. Co-infection experiments revealed that the rough and semirough mutants were severely impaired in their ability to colonize the Peyer's patches and in contrast to the wild-type strain they did not colonize spleen and liver. The mutant with random distribution of O antigen chain lengths, however, survived better but started to be cleared from mouse organs after 8 days. As an explanation to this attenuation we present here evidence that other Yersinia virulence factors depend on the presence of O antigen for their proper function and/or expression. We demonstrated that in the rough mutant: (i) the YadA function but not its expression was altered; (ii) Ail was not expressed and (iii) inv expression was downregulated. On the other hand, expression of flhDC, the flagellar master regulatory operon, was upregulated in this mutant with a concomitant increase in the production of flagellins. Finally, expression of yplA, encoding for the Yersinia phospholipase A, was also upregulated accompanied by an increased flagellar type III secretion system mediated secretion of YplA to culture medium. Together these findings suggest that the absence of O antigen in the outer membrane of Yersinia either directly or indirectly, for example through a cellular or membrane stress, could act as a regulatory signal.
Resumo:
Background: Members of the genus Cronobacter are causes of rare but severe illness in neonates and preterm infants following the ingestion of contaminated infant formula. Seven species have been described and two of the species genomes were subsequently published. In this study, we performed comparative genomics on eight strains of Cronobacter, including six that we sequenced (representing six of the seven species) and two previously published, closed genomes.
Results: We identified and characterized the features associated with the core and pan genome of the genus Cronobacter in an attempt to understand the evolution of these bacteria and the genetic content of each species. We identified 84 genomic regions that are present in two or more Cronobacter genomes, along with 45 unique genomic regions. Many potentially horizontally transferred genes, such as lysogenic prophages, were also identified. Most notable among these were several type six secretion system gene clusters, transposons that carried tellurium, copper and/or silver resistance genes, and a novel integrative conjugative element.
Conclusions: Cronobacter have diverged into two clusters, one consisting of C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. While several genetic determinants for plant-association and human virulence could be found in the core genome of Cronobacter, the four Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits.
Resumo:
Klebsiella pneumoniae is etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group have shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-on-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening, that of metabolism and transport (32% of the mutants), and of enveloperelated genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression which in turn underlined the NF- κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS Opolysaccharide and T2SS mutants-induced responses were dependent on TLR2-TLR4- MyD88 activation suggested that LPS Opolysaccharide and PulA perturbed TLRdependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS Opolysaccharide and PulA T2SS could be new targets for designing new antimicrobials. Increasing TLR-governed defence responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.
Resumo:
The bacterial plant pathogen Pseudomonas syringae causes disease in a wide range of plants. The associated decrease in crop yields results in economic losses and threatens global food security. Competition exists between the plant immune system and the pathogen, the basic principles of which can be applied to animal infection pathways. P. syringae uses a type III secretion system (T3SS) to deliver virulence factors into the plant that promote survival of the bacterium. The P. syringae T3SS is a product of the hypersensitive response and pathogenicity (hrp) and hypersensitive response and conserved (hrc) gene cluster, which is strictly controlled by the codependent enhancer-binding proteins HrpR and HrpS. Through a combination of bacterial gene regulation and phenotypic studies, plant infection assays, and plant hormone quantifications, we now report that Chp8 (i) is embedded in the Hrp regulon and expressed in response to plant signals and HrpRS, (ii) is a functional diguanylate cyclase, (iii) decreases the expression of the major pathogen-associated molecular pattern (PAMP) flagellin and increases extracellular polysaccharides (EPS), and (iv) impacts the salicylic acid/jasmonic acid hormonal immune response and disease progression. We propose that Chp8 expression dampens PAMP-triggered immunity during early plant infection.
Resumo:
This work aims to contribute to determine the resistance profile to different antibiotics (ampicillin, gentamicin, penicillin G, oxytetracycline, lincomycin, neomycin, streptomycin, enrofloxacin, colistin sulfate, trimethoprim, sulfamide, tulathromycin, ceftiofur, amoxicillin/clavulanic acid), to assess genetic determinants associated to aminoglycoside antibiotics resistance, namely the presence of genes encoding acetyltransferases (AAC), phosphotransferases (APH) and nucletildiltranferases (ANT), determined by PCR studies, and to search for potentially pathogenic features as the production of extracellular lipases and proteases and the presence of genes encoding for putative virulence factors as aerolysin and related toxins, lipase proteins and type III secretion system component.
Resumo:
Esta tese tem como foco principal a análise dos principais tipos de amplificação óptica e algumas de suas aplicações em sistemas de comunicação óptica. Para cada uma das tecnologias abordadas, procurou-se definir o estado da arte bem como identificar as oportunidades de desenvolvimento científico relacionadas. Os amplificadores para os quais foi dirigido alguma atenção neste documento foram os amplificadores em fibra dopada com Érbio (EDFA), os amplificadores a semicondutor (SOA) e os amplificadores de Raman (RA). Este trabalho iniciou-se com o estudo e análise dos EDFA’s. Dado o interesse científico e económico que estes amplificadores têm merecido, apenas poucos nichos de investigação estão ainda em aberto. Dentro destes, focá-mo-nos na análise de diferentes perfis de fibra óptica dopada de forma a conseguir uma optimização do desempenho dessas fibras como sistemas de amplificação. Considerando a fase anterior do trabalho como uma base de modelização para sistemas de amplificação com base em fibra e dopantes, evoluiu-se para amplificadores dopados mas em guias de onda (EDWA). Este tipo de amplificador tenta reduzir o volume físico destes dispositivos, mantendo as suas características principais. Para se ter uma forma de comparação de desempenho deste tipo de amplificador com os amplificadores em fibra, foram desenvolvidos modelos de caixa preta (BBM) e os seus parâmetros afinados por forma a termos uma boa modelização e posterior uso deste tipo de amplificiadores em setups de simulação mais complexos. Depois de modelizados e compreendidos os processo em amplificadores dopados, e com vista a adquirir uma visão global comparativa, foi imperativo passar pelo estudo dos processos de amplificação paramétrica de Raman. Esse tipo de amplificação, sendo inerente, ocorre em todas as bandas de propagação em fibra e é bastante flexível. Estes amplificadores foram inicialmente modelizados, e algumas de suas aplicações em redes passivas de acesso foram estudadas. Em especial uma série de requisitos, como por exemplo, a gama de comprimentos de onda sobre os quais existem amplificação e os altos débitos de perdas de inserção, nos levaram à investigação de um processo de amplificação que se ajustasse a eles, especialmente para buscar maiores capacidades de amplificação (nomeadamente longos alcances – superiores a 100 km – e altas razões de divisão – 1:512). Outro processo investigado foi a possibilidade de flexibilização dos parâmetros de comprimento de onda de ganho sem ter que mudar as caractísticas da bomba e se possível, mantendo toda a referenciação no transmissor. Este processo baseou-se na técnica de clamping de ganho já bastante estudada, mas com algumas modificações importantes, nomeadamente a nível do esquema (reflexão apenas num dos extremos) e da modelização do processo. O processo resultante foi inovador pelo recurso a espalhamentos de Rayleigh e Raman e o uso de um reflector de apenas um dos lados para obtenção de laser. Este processo foi modelizado através das equações de propagação e optimizado, tendo sido demonstrado experimentalmente e validado para diferentes tipos de fibras. Nesta linha, e dada a versatilidade do modelo desenvolvido, foi apresentada uma aplicação mais avançada para este tipo de amplificadores. Fazendo uso da sua resposta ultra rápida, foi proposto e analisado um regenerador 2R e analisada por simulação a sua gama de aplicação tendo em vista a sua aplicação sistémica. A parte final deste trabalho concentrou-se nos amplificadores a semiconductor (SOA). Para este tipo de amplificador, os esforços foram postos mais a nível de aplicação do que a nível de sua modelização. As aplicações principais para estes amplificadores foram baseadas em clamping óptico do ganho, visando a combinação de funções lógicas essenciais para a concepção de um latch óptico com base em componentes discretos. Assim, com base num chip de ganho, foi obtido uma porta lógica NOT, a qual foi caracterizada e demonstrada experimentalmente. Esta foi ainda introduzida num esquema de latching de forma a produzir um bi-estável totalmente óptico, o qual também foi demonstrado e caracterizado. Este trabalho é finalizado com uma conclusão geral relatando os subsistemas de amplificação e suas aplicacações.
Resumo:
Fusobacterium necrophorum is a causative agent of persistent sore throat syndrome, tonsillar abscesses and Lemierre’s syndrome (LS) in humans. LS is characterised by thrombophlebitis of the jugular vein and bacteraemia. It is a Gram-negative, anaerobic bacterium which to date has no available reference genome. Draft genomes suggest it to be a single circular chromosome of approximately 2.2Mb. A reference strain of each of the two F. necrophorum subspecies and a clinical isolate from a LS patient were sequenced on a Roche 454 GS-FLX+. Sequence data was assembled using Roche GS Assembler and the resulting contigs annotated using xBASE, Pfam and BLAST. The annotation data was mined for gene products associated with virulence revealing a leukotoxin, haemolysin, filamentous haemagglutinnin, adhesin, hemin receptor, phage genes, CRISPR-associated proteins, ecotin and a putative type V secretion system. Data will be presented on comparative genomics of the three strains, with a focus on putative virulence genes. Tools such as Artemis Comparison Tool and ClustalO were used for sequence alignments and PhyML was used to generate phylogenetic trees. Conserved motifs associated with virulence were also located. Understanding variations at the genomic level may help to explain the increased virulence of some F. necrophorum strains.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les autotransporteurs monomériques, appartenant au système de sécrétion de type V, correspondent à une famille importante de facteurs de virulence bactériens. Plusieurs fonctions, souvent essentielles pour le développement d’une infection ou pour le maintien et la survie des bactéries dans l’organisme hôte, ont été décrites pour cette famille de protéines. Malgré l’importance de ces protéines, notre connaissance de leur biogenèse et de leur mécanisme d’action demeure relativement limitée. L’autotransporteur AIDA-I, retrouvé chez diverses souches d’Escherichia coli, est un autotransporter multifonctionnel typique impliqué dans l’adhésion et l’invasion cellulaire ainsi que dans la formation de biofilm et d’agrégats bactériens. Les domaines extracellulaires d’autotransporteurs monomériques sont responsables de la fonctionnalité et possèdent pratiquement tous une structure caractéristique d’hélice β. Nous avons mené une étude de mutagenèse aléatoire avec AIDA-I afin de comprendre la base de la multifonctionnalité de cette protéine. Par cette approche, nous avons démontré que les domaines passagers de certains autotransporteurs possèdent une organisation modulaire, ce qui signifie qu’ils sont construits sous la forme de modules fonctionnels. Les domaines passagers d’autotransporteurs peuvent être clivés et relâchés dans le milieu extracellulaire. Toutefois, malgré la diversité des mécanismes de clivage existants, plusieurs protéines, telles qu’AIDA-I, sont clivées par un mécanisme qui demeure inconnu. En effectuant une renaturation in vitro d’AIDA-I, couplée avec une approche de mutagenèse dirigée, nous avons démontré que cette protéine se clive par un mécanisme autocatalytique qui implique deux acides aminés possédant un groupement carboxyle. Ces résultats ont permis la description d’un nouveau mécanisme de clivage pour la famille des autotransporteurs monomériques. Une des particularités d’AIDA-I est sa glycosylation par une heptosyltransférase spécifique nommée Aah. La glycosylation est un concept plutôt récent chez les bactéries et pour l’instant, très peu de protéines ont été décrites comme glycosylées chez E. coli. Nous avons démontré que Aah est le prototype pour une nouvelle famille de glycosyltransférases bactériennes retrouvées chez diverses espèces de protéobactéries. La glycosylation d’AIDA-I est une modification cytoplasmique et post-traductionnelle. De plus, Aah ne reconnaît pas une séquence primaire, mais plutôt un motif structural. Ces observations sont uniques chez les bactéries et permettent d’élargir nos connaissances sur la glycosylation chez les procaryotes. La glycosylation par Aah est essentielle pour la conformation d’AIDA-I et par conséquent pour sa capacité de permettre l’adhésion. Puisque plusieurs homologues d’Aah sont retrouvés à proximité d’autotransporteurs monomériques putatifs, cette famille de glycosyltranférases pourrait être importante, sinon essentielle, pour la biogenèse et/ou la fonction de nombreux autotransporteurs. En conclusion, les résultats présentés dans cette thèse apportent de nouvelles informations et permettent une meilleure compréhension de la biogenèse d’une des plus importantes familles de protéines sécrétées chez les bactéries Gram négatif.
Resumo:
In the present study, we investigated the involvement of Aeromonas spp. in eliciting disease outbreaks in freshwater ornamental fishes across the state of Kerala, India. We investigated three incidences of disease, in which the moribund fishes exhibited clinical signs such as haemorrhagic septicemia (in gouramy, Trichogaster sp.), dropsy (in Oscar, Astronotus ocellatus) and tail rot/fin rot (in gold fish, Carassius carassius). Pure cultures (n = 20 from each fish; 60 in total) of Aeromonas spp. were recovered from the abdominal fluid as well as from internal organs of affected fishes, although they could not be identified to species level because of the variations in their phenotypic characters. The molecular fingerprinting of the isolates using Enterobacterial Repetitive Intergenic Consensus PCR proved the genetic diversity of the isolates from the three sites. The phylogenetic trees constructed using concatenated sequences (using 16S rRNA, gyrA, gyrB and rpoD genes) indicated that they were related to Aeromonas veronii. They exhibited marked cytotoxic and haemolytic activity, which were responsible for the pathogenic potential of the isolates. The isolates possessed multiple virulence genes such as enterotoxins (act and alt), haemolytic toxins (aerA and hlyA), genes involved in type III secretion system (ascV, aexT and ascF–ascG), glycerophospholipid-cholesterol acyltransferase (gcat) and a type IV pilus (tapA) gene, as determined by PCR. Virulence of representative isolates to goldfish was also tested, and we found LD50 values of 104.07–105.35 cfu/fish. Furthermore, the organisms could be recovered as pure cultures from the lesions as well as from the internal organs.