939 resultados para Two dimensional fuzzy fault tree analysis
Resumo:
Vagueness and high dimensional space data are usual features of current data. The paper is an approach to identify conceptual structures among fuzzy three dimensional data sets in order to get conceptual hierarchy. We propose a fuzzy extension of the Galois connections that allows to demonstrate an isomorphism theorem between fuzzy sets closures which is the basis for generating lattices ordered-sets
Resumo:
Compared to synthetic aperture radars (SARs), the angular resolution of microwave radiometers is quite poor. Traditionally, it has been limited by the physical size of the antenna. However, the angular resolution can be improved by means of aperture synthesis interferometric techniques. A narrow beam is synthesized during the image formation processing of the cross-correlations measured at zero-lag between pairs of signals collected by an array of antennas. The angular resolution is then determined by the maximum antenna spacing normalized to the wavelength (baseline). The next step in improving the angular resolution is the Doppler-Radiometer, somehow related to the super-synthesis radiometers and the Radiometer-SAR. This paper presents the concept of a three-antenna Doppler-Radiometer for 2D imaging. The performance of this instrument is evaluated in terms of angular/spatial resolution and radiometric sensitivity, and an L-band illustrative example is presented.
Resumo:
The purpose of this study is to clinically validate a new two-dimensional preoperative planning software for cementless total hip arthroplasty (THA). Manual and two-dimensional computer-assisted planning were compared by an independent observer for each of the 30 patients with osteoarthritis who underwent THA. This study showed that there were no statistical differences between the results of both preoperative plans in terms of stem size and neck length (<1 size) and hip rotation center position (<5 mm). Two-dimensional computer-assisted preoperative planning provided successful results comparable to those using the manual procedure, thereby allowing the surgeon to simulate various stem designs easily.
Resumo:
A weak version of the cosmic censorship hypothesis is implemented as a set of boundary conditions on exact semiclassical solutions of two-dimensional dilaton gravity. These boundary conditions reflect low-energy matter from the strong coupling region and they also serve to stabilize the vacuum of the theory against decay into negative energy states. Information about low-energy incoming matter can be recovered in the final state but at high energy black holes are formed and inevitably lead to information loss at the semiclassical level.
Resumo:
A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved including back-reaction effects, is investigated at both classical and quantum levels. This family contains the RST model as a special case, and it continuously interpolates between models having a flat (Rindler) geometry and a constant curvature metric with a nontrivial dilaton field. The processes of formation of black hole singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical aspects of these geometries are discussed, including the cosmological interpretation.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
PURPOSE: To improve coronary magnetic resonance angiography (MRA) by combining a two-dimensional (2D) spatially selective radiofrequency (RF) pulse with a T2 -preparation module ("2D-T2 -Prep"). METHODS: An adiabatic T2 -Prep was modified so that the first and last pulses were of differing spatial selectivity. The first RF pulse was replaced by a 2D pulse, such that a pencil-beam volume is excited. The last RF pulse remains nonselective, thus restoring the T2 -prepared pencil-beam, while tipping the (formerly longitudinal) magnetization outside of the pencil-beam into the transverse plane, where it is then spoiled. Thus, only a cylinder of T2 -prepared tissue remains for imaging. Numerical simulations were followed by phantom validation and in vivo coronary MRA, where the technique was quantitatively evaluated. Reduced field-of-view (rFoV) images were similarly studied. RESULTS: In vivo, full field-of-view 2D-T2 -Prep significantly improved vessel sharpness as compared to conventional T2 -Prep, without adversely affecting signal-to-noise (SNR) or contrast-to-noise ratios (CNR). It also reduced respiratory motion artifacts. In rFoV images, the SNR, CNR, and vessel sharpness decreased, although scan time reduction was 60%. CONCLUSION: When compared with conventional T2 -Prep, the 2D-T2 -Prep improves vessel sharpness and decreases respiratory ghosting while preserving both SNR and CNR. It may also acquire rFoV images for accelerated data acquisition.
Resumo:
To determine the feasibility of data transfer, an interlaboratory comparison was conducted on colon carcinoma cell line (DLD-1) proteins resolved by two-dimensional polyacrylamide gel electrophoresis either on small (6 x 7 cm) or large (16x18 cm) gels. The gels were silver-stained and scanned by laser densitometry, and the image obtained was analyzed using Melanie software. The number of spots detected was 1337+/-161 vs. 2382+/-176 for small vs. large format gels, respectively. After gel calibration using landmarks determined using pl and Mr markers, large- and small-format gels were matched and 712+/-36 proteins were found on both types of gels. Having performed accurate gel matching it was possible to acquire additional information after accessing a 2-D PAGE reference database (http://www.expasy.ch/ cgibin/map2/def?DLD1_HUMAN). Thus, the difference in gel size is not an obstacle for data transfer. This will facilitate exchanges between laboratories or consultation concerning existing databases.
Resumo:
The speed of traveling fronts for a two-dimensional model of a delayed reactiondispersal process is derived analytically and from simulations of molecular dynamics. We show that the one-dimensional (1D) and two-dimensional (2D) versions of a given kernel do not yield always the same speed. It is also shown that the speeds of time-delayed fronts may be higher than those predicted by the corresponding non-delayed models. This result is shown for systems with peaked dispersal kernels which lead to ballistic transport
Resumo:
The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schrödinger equation for a bidimensinal potential. This potential can be applied in several systems in physical and chemistry context , for instance, it can be used to study benzene molecule.
Resumo:
En del av de intressantaste fenomenen inom dagens materialfysik uppstår ur ett intrikat samspel mellan myriader av elektroner. Högtemperatursupraledare är det mest berömda exemplet. Varken klassiska teorier eller modeller där elektronerna är oberoende av varandra kan förklara de häpnadsväckande effekterna i de starkt korrelerade elektronsystemen. I vissa kopparoxider, till exempel La2CuO4, är det känt att valenselektronerna till följd av en stark ömsesidig växelverkan lokaliseras en och en till kopparatomerna i föreningens CuO2 plan. Laddningarnas inneboende magnetiska moment—spinnet—får då en avgörande roll för materialets elektriska och magnetiska egenskaper, vilka i exemplets fall kan beskrivas med Heisenbergmodellen som är den grundläggande teoretiska modellen för mikroskopisk magnetism. Men exakt varför föreningarna kan bli supraledande då de dopas med överskottsladdningar är än så länge en obesvarad fråga. Min avhandling undersöker orenheters inverkan på Heisenbergmodellens magnetiska egenskaper—ett problem av både experimentell och teoretisk relevans. En etablerad numerisk metod har använts—en kvantmekanisk Monte Carlo teknik—för att utföra omfattande datorsimuleringar av den matematiska modellen på två dedikerade Linux datorkluster. Arbetet hör till området beräkningsfysik. De teoretiska modellerna för starkt korrelerade elektronsystem, däribland Heisenbergmodellen, är ytterst invecklade matematiskt sett och de kan inte lösas exakt. Analytiska utredningar bygger för det mesta på antaganden och förenklingar vars inverkningar på slutresultatet är ofta oklara. I det avseende kan numeriska studier vara exakta, det vill säga de kan behandla modellerna som de är. Oftast behövs bägge tillvägagångssätten. Den röda tråden i arbetet har varit att numeriskt testa vissa högaktuella analytiska förutsägelser rörande effekterna av orenheter i Heisenbergmodellen. En del av dem har vi på basen av mycket noggranna data kunnat bekräfta. Men våra resultat har också påvisat felaktigheter i de analytiska prognoserna som sedermera delvis reviderats. En del av avhandlingens numeriska upptäckter har i sin tur stimulerat till helt nya teoretiska studier.
Resumo:
The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE) is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%), strain rate (1/s), displacement (mm) and velocity (cm/s), respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.