320 resultados para Triumphal arches
Resumo:
A black and white German Holstein calf displayed a complex double malformation in shape of a thoracopagus parasiticus. By means of a molecular genetic investigation the genesis of the malformation from one zygote could be demonstrated. Both vertebral columns showed a pronounced lordosis, with the vertebral column of one animal ending in a rudimentary head. Close to this rudiment two derivates of branchial arches were found. The two thoracic cavities merged into one "thorax". In the shared thoracic cavity one heart was found. In its right atrium, a cherry-sized structure was found in which heart- and vascular smooth muscles were demonstrated histologically. The aorta split shortly after its origin to provide both animals with one aorta each. The larger pair of lungs was connected with a trachea leading to the head while the smaller pair of lungs originated from a trachea deriving from the rudimentary head. The diaphragm jejunum and split afterwards. The pedigree of the affected animal showed neither inbreeding nor any other affected animal.
Resumo:
A modified uvulopalatopharyngoplasty (UPPP) was carried out between January 1992 and December 2003 at the ENT Department of the Inselspital in Bern in 146 patients with habitual or complicated rhonchopathy. The operation consisted of a classical tonsillectomy or residual tonsil resection and additional shortening of the uvula. The natural mucosal fold between the uvula and the upper pole of the tonsils was carefully preserved. A wide opening to the rhinopharynx was created by asymmetric suturing of the glossopalantine and pharyngopalatine arches. A retrospective questionnaire with regard to rhonchopathy, phases of apnea, daytime drowsiness, obstruction of nasal breathing, long-term complications and patient satisfaction was used to evaluate the short-term and long-term effectiveness of the modified UPPP as well as the incidence of adverse side effects. Complete postoperative courses were evaluated in 116 patients. Surgical complications were restricted to one case with postoperative hemorrhage. A velum insufficiency or postoperative rhinopharyngeal stenosis did not occur. Eighty-three patients (72%) confirmed a persistent suppression or substantial improvement of the rhonchopathy. Disappearance or decrease of sleep apnea was confirmed in 12 (63%) out of 19 postoperative polysomnographic follow-up investigations. Long-term complications occurred in a total of 27 (23%) of 116 patients. They were confined to minor problems such as dryness of the mouth (n = 12), slight difficulty in swallowing (n = 7), discrete speech disturbances (n = 1), and slight pharyngeal dysesthesias (n = 7) with feeling of a lump in the throat and compulsive clearing of the throat. Eighty-five patients (73%) reported that they were satisfied with the postoperative result even several years after the operation. Looking back, 31 patients (27%) would no longer have the operation performed. The inadequate result of the rhonchopathy was specified as the reason by 21 patients. Ten patients had unpleasant memories of the operation because of intensive postoperative pain. Snoring and apneic phases are suppressed or improved by non-traumatic UPPP in the majority of patients. This effect persisted even years after the operation.
Resumo:
BACKGROUND: Endoderm organ primordia become specified between gastrulation and gut tube folding in Amniotes. Although the requirement for RA signaling for the development of a few individual endoderm organs has been established a systematic assessment of its activity along the entire antero-posterior axis has not been performed in this germ layer. METHODOLOGY/PRINCIPAL FINDINGS: RA is synthesized from gastrulation to somitogenesis in the mesoderm that is close to the developing gut tube. In the branchial arch region specific levels of RA signaling control organ boundaries. The most anterior endoderm forming the thyroid gland is specified in the absence of RA signaling. Increasing RA in anterior branchial arches results in thyroid primordium repression and the induction of more posterior markers such as branchial arch Hox genes. Conversely reducing RA signaling shifts Hox genes posteriorly in endoderm. These results imply that RA acts as a caudalizing factor in a graded manner in pharyngeal endoderm. Posterior foregut and midgut organ primordia also require RA, but exposing endoderm to additional RA is not sufficient to expand these primordia anteriorly. We show that in chick, in contrast to non-Amniotes, RA signaling is not only necessary during gastrulation, but also throughout gut tube folding during somitogenesis. Our results show that the induction of CdxA, a midgut marker, and pancreas induction require direct RA signaling in endoderm. Moreover, communication between CdxA(+) cells is necessary to maintain CdxA expression, therefore synchronizing the cells of the midgut primordium. We further show that the RA pathway acts synergistically with FGF4 in endoderm patterning rather than mediating FGF4 activity. CONCLUSIONS/SIGNIFICANCE: Our work establishes that retinoic acid (RA) signaling coordinates the position of different endoderm organs along the antero-posterior axis in chick embryos and could serve as a basis for the differentiation of specific endodermal organs from ES cells.
Resumo:
INTRODUCTION The purpose of this study was to examine the overall success of miniscrews inserted in the paramedian palatal region for support of various appliances during orthodontic treatment. METHODS The patients received 1 or 2 miniscrews in the paramedian anterior palate of 8.0-mm length and 1.6-mm diameter placed during orthodontic treatment by the same experienced orthodontist. RESULTS In total, 196 patients (121 girls, 75 boys; median age, 11.7; interquartile range, 3.7) who received 384 miniscrews were evaluated. Two hundred four miniscrews were used with rapid palatal expansion appliances, 136 with appliances for distalization of posterior teeth, and 44 with other appliances, such as transpalatal arches for tooth stabilization. The overall survival of the miniscrews was excellent (97.9%) in the cases examined. Cox regression analysis showed no difference in the overall survival rates of miniscrews loaded with different appliances for sex (hazard ratio, 0.95; 95% confidence interval, 0.71-1.27; P = 0.73) after adjusting for appliance and age. CONCLUSIONS This study shows that miniscrews placed in the paramedian anterior palate for supporting various orthodontic appliances have excellent survival.
Resumo:
Cart1 is a paired-class homeobox-containing gene that is expressed in head mesenchyme, branchial arches, limb buds, and various cartilages during embryogenesis. To understand the role of Cart1 during mammalian development, I generated Cart1-mutant mice by gene targeting in mouse embryonic stem cells. Cart1-homozygous mutants were born alive but all died soon after birth. Most had acrania (absence of the cranial vault) and meroanencephaly (absence of part of the brain). In situ hybridization studies showed that Cart1 is expressed specifically in forebrain mesenchyme but not in midbrain or hindbrain mesenchyme nor in the neural tube. Developmental studies revealed a transient deficiency of forebrain mesenchyme cells due to apoptosis associated with a delay in neural tube closure in that region. Subsequently, the forebrain region became filled with mesenchyme and closed, however, the midbrain neural tube region never initiated closure and remained open. These results suggest that Cart1 is required for the survival of forebrain mesenchyme and that its absence disrupts cranial neural tube morphogenesis by blocking the initiation of closure in the midbrain region, and this ultimately leads to the generation of lethal craniofacial defects. Prenatal treatment of Cart1 homozygous mutants with folic acid suppressed the development of the acrania/meroanencephaly phenotype. Thus, Cart1 mutant mice provide a novel animal model for understanding the cellular, molecular, and genetic etiology of neural tube defects and for the development of prenatal therapeutic protocols using folic acid. ^
Resumo:
by A. Goldfaden. Arr. for violin by Henry A. Russotta
Resumo:
Ausw. Arr. [[Elektronische Ressource]]
Resumo:
Objectives Pharyngeal arches develop in the head and neck regions, and give rise to teeth, oral jaws, the hyoid bone, operculum, gills, and pharyngeal jaws in teleosts. In this study, the expression patterns of genes in the sonic hedgehog (shh), wnt, ectodysplasin A (eda), and bone morphogenetic protein (bmp) pathways were investigated in the pharyngeal arches of Haplochromis piceatus, one of the Lake Victoria cichlids. Furthermore, the role of the shh pathway in pharyngeal arch development in H. piceatus larvae was investigated. Methods The expression patterns of lymphocyte enhancer binding factor 1 (lef1), ectodysplasin A receptor (edar), shh, patched 1 (ptch1), bmp4, sp5 transcription factor (sp5), sclerostin domain containing 1a (sostdc1a), and dickkopf 1 (dkk1) were investigated in H. piceatus larvae by in situ hybridization. The role of the shh pathway was investigated through morphological phenotypic characterization after its inhibition. Results We found that lef1, edar, shh, ptch1, bmp4, dkk1, sostdc1a, and sp5 were expressed not only in the teeth, but also in the operculum and gill filaments of H piceatus larvae. After blocking the shh pathway using cyclopamine, we observed ectopic shh expression and the disappearance of ptch1 expression. After six weeks of cyclopamine treatment, an absence of teeth in the oral upper jaws and a poor outgrowth of premaxilla, operculum, and gill filaments in juvenile H. piceatus were observed. Conclusions These results suggest that the shh pathway is important for the development of pharyngeal arch derivatives such as teeth, premaxilla, operculum, and gill filaments in H. piceatus.
Resumo:
OBJECTIVE To assess the in vivo amount of BPA released from a visible light-cured orthodontic adhesive, immediately after bracket bonding. METHODS 20 orthodontic patients were recruited after obtaining informed consent. All patients received 24 orthodontic brackets in both dental arches. In Group A (11 patients), 25 ml of tap water were used for mouth rinsing, whereas in Group B (9 patients) a simulated mouth rinse formulation was used: a mixture of 20 ml de-ionized water plus 5 ml absolute ethanol. Rinsing solutions were collected before, immediately after placing the orthodontic appliances and after washing out the oral cavity and were then stored in glass tubes. Rinsing was performed in a single phase for 60s with the entire volume of each liquid. The BPA analysis was performed by gas chromatography-mass spectrometry. RESULTS An increase in BPA concentration immediately after the 1st post-bonding rinse was observed, for both rinsing media, which was reduced after the 2nd post-bonding rinse. Water exhibited higher levels of BPA concentration than water/ethanol after 1st and 2nd post-bonding rinses. Two-way mixed Repeated Measures ANOVA showed that the primary null hypothesis declaring mean BPA concentration to be equal across rinsing medium and rinsing status was rejected (p-value <0.001). The main effects of the rinsing medium and status, as well as their interaction were found to be statistically significant (p-values 0.048, <0.001 and 0.011 respectively). SIGNIFICANCE A significant pattern of increase of BPA concentration, followed by a decrease that reached the initial values was observed. The amount of BPA was relatively low and far below the reference limits of tolerable daily intake.
Resumo:
OBJECTIVES
To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data.
METHODS
Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses.
RESULTS
There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D<0.17 mm), as expected, followed by AC and BZ superimpositions that presented similar level of accuracy (D<0.5 mm). 3P and 1Z were the least accurate superimpositions (0.79
Resumo:
PURPOSE In the present case series, the authors report on seven cases of erosively worn dentitions (98 posterior teeth) which were treated with direct resin composite. MATERIALS AND METHODS In all cases, both arches were restored by using the so-called stamp technique. All patients were treated with standardized materials and protocols. Prior to treatment, a waxup was made on die-cast models to build up the loss of occlusion as well as ensure the optimal future anatomy and function of the eroded teeth to be restored. During treatment, teeth were restored by using templates of silicone (ie, two "stamps," one on the vestibular, one on the oral aspect of each tooth), which were filled with resin composite in order to transfer the planned, future restoration (ie, in the shape of the waxup) from the extra- to the intraoral situation. Baseline examinations were performed in all patients after treatment, and photographs as well as radiographs were taken. To evaluate the outcome, the modified United States Public Health Service criteria (USPHS) were used. RESULTS The patients were re-assessed after a mean observation time of 40 months (40.8 ± 7.2 months). The overall outcome of the restorations was good, and almost exclusively "Alpha" scores were given. Only the marginal integrity and the anatomical form received a "Charlie" score (10.2%) in two cases. CONCLUSION Direct resin composite restorations made with the stamp technique are a valuable treatment option for restoring erosively worn dentitions.
Resumo:
Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^
Resumo:
A fundamental task in developmental biology is to understand the molecular mechanisms governing early embryogenesis. The aim of this study was to understand the developmental role of a putative basic helix-loop-helix (b-HLH) transcription factor, twist, during mouse embryogenesis.^ twist was originally identified in Drosophila as one of the zygotic genes, including snail, that were required for dorsal-ventral patterning. In Drosophila embryogenesis, twist is expressed in the cells of the ventral midline destined to form mesoderm. In embryos lacking twist expression, their ventral cells fail to form a ventral furrow and subsequently no mesoderm is formed.^ During mouse embryogenesis, twist is expressed after initial mesoderm formation in both mesoderm and cranial neural crest cell derivatives. To study the role of twist in vivo, twist-null embryos were generated by gene targeting. Embryos homozygous for the twist mutation die at midgestation. The most prominent phenotype in the present study was a failure of the cranial neural tube to close (exencephaly). twist-null embryos also showed defects in head mesenchyme, branchial arches, somites, and limb buds.^ To understand whether twist functions cell-autonomously and to investigate how twist-null cells interact with wild-type cells in vivo, twist chimeras composed of both twist-null and wild-type cells marked by the expression of the lacZgene were generated. Chimeric analysis revealed a correlation between the incidence of exencephaly and the contribution of the underlying twist-null head mesenchyme, thus strongly suggesting that twist-expressing head mesenchyme is required for the closure of the cranial neural tube. These studies have identified twist as a critical regulator for the mesenchymal fate determination within the cranial neural crest lineage. Most strikingly, twist-null head mesenchyme cells were always segregated from wild-type cells, indicating that the twist mutation altered the adhesive specificity of these cells. Furthermore, these results also indicated that twist functions cell-autonomously in the head, arch, and limb mesenchyme but non-cell-autonomously in the somites. Taken together, these studies have established the essential role of twist during mouse embryogenesis. ^
Resumo:
Pitx2, a paired-related homeobox gene that is mutated in human Rieger Syndrome, plays a key role in transferring the early asymmetric signals to individual organs. Pitx2 encodes three isoforms, Pitx2a, Pitx2b and Pitx2c. I found that Pitx2c was the Pitx2 isoform for regulating left-right asymmetry in heart, lung and the predominant isoform in guts. Previous studies suggested that the generation of left-right asymmetry within individual organs is an all or none, random event. Phenotypic analysis of various Pitx2 allelic combinations, that encode graded levels of Pitx2c, reveals an organ-intrinsic mechanism for regulating left-right asymmetric morphogenesis based on differential response to Pitx2c levels. The heart needs low Pitx2c levels, while the lungs and duodenum require higher doses of Pitx2c. In addition, the duodenal rotation is under strict control of Pitx2c activity. Left-right asymmetry development for aortic arch arteries involves complex vascular remodeling. Left-sided expression of Pitx2c in these developing vessels implied its potential function in this process. In order to determine if Pitx2c also can regulate the left-right asymmetry of the aortic arch arteries, a Pitx2c-specific loss of function mutation is generated. Although in wild type mice, the direction of the aortic arch is always oriented toward the left side, the directions of the aortic arches in the mutants were randomized, showing that Pitx2c also determined the left-right asymmetry of these vessels. I have further showed that the cardiac neural crest wasn't involved in this vascular remodeling process. In addition, all mutant embryos had Double Outlet Right Ventricle (DORV), a common congenital heart disease. This study provided insight into the mechanism of Pitx2c-mediated late stages of left-right asymmetry development and identified the roles of Pitx2c in regulation of aortic arch remodeling and heart development. ^
Resumo:
The Armadillo family catenin proteins function in multiple capacities including cadherin-mediated cell-cell adhesion and nuclear signaling. The newest catenin, p120 catenin, differs from the classical catenins and binds to the membrane-proximal domain of cadherins. Recently, a novel transcription factor Kaiso was found to interact with p120 catenin, suggesting that p120 catenin also possesses a nuclear function. We isolated the Xenopus homolog of Kaiso, XKaiso, from a Xenopus stage 17 cDNA library. XKaiso contains an amino-terminal BTB/POZ domain and three carboxyl-terminal zinc fingers. The XKaiso transcript was present maternally and expressed throughout early embryonic development. XKaiso's spatial expression was defined via in situ hybridization and was found localized to the brain, eye, ear, branchial arches, and spinal cord. Co-immunoprecipitation of Xenopus p120 catenin and XKaiso demonstrated their mutual association, while related experiments employing differentially epitope-tagged XKaiso constructs suggest that XKaiso also self-associates. On the functional level, reporter assays employing a chimera of XKaiso fused to the GAL4 DNA binding domain indicated that XKaiso is a transcriptional repressor. To better understand the significance of the Kaiso-p120 catenin complex in vertebrate development, Kaiso knock-down experiments were undertaken, and the modulatory role of p120 catenin in Kaiso function examined during Xenopus development. Using morpholino antisense oligonucleotides to block translation of XKaiso, XKaiso was found to be essential for Xenopus gastrulation, being required for correct morphogenetic movements in early embryogenesis. Molecular marker analyses indicated that one target gene of the Wnt/β-catenin pathway, Siamois, is significantly increased in embryos depleted for XKaiso, while other dorsal, ventral, and mesodermal cell fate markers were unaltered. In addition, the non-canonical Wnt-11, known to participate in planar cell polarity/convergent extension processes, was significantly upregulated following depletion of XKaiso. Such increased Wnt-11 expression likely contributed to the XKaiso depletion phenotype because a dominant negative form of Wnt-11 or of the downstream effector Dishevelled partially rescued the observed gastrulation defects. These results show that XKaiso is essential for proper gastrulation movements, resulting at least in part from its modulation of non-canonical Wnt signaling. The significance of the XKaiso-p120 catenin interaction has yet to be determined, but appears to include a role in modulating genes promoting canonical and non-canonical Wnt signals. ^