955 resultados para Trees, Fossil
Resumo:
The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.
Resumo:
Surface pollen assemblages and their relationhips with the modern vegetation and climate provide a foundation for investigating palaeo-environment conditions by fossil pollen analysis. A promising trend of palynology is to link pollen data more closely with ecology. In this study, I summarized the characteristics of surface pollen assemblages and their quantitative relation with the vegetation and climate of the typical ecological regions in northern China, based on surface pollen analysis of 205 sites and investigating of modern vegetation and climate. The primary conclusions are as follows:The differences in surface pollen assemblages for different vegetation regions are obvious. In the forest communities, the arboreal pollen percentages are more than 30%, herbs less than 50% and shrubs less than 10%; total pollen concentrations are more than 106 grains/g. In the steppe communities, arboreal pollen percentages are generally less than 5%; herb pollen percentages are more than 90%, and Artemisia and Chenopodiaceae are dominant in the pollen assemblages; total pollen concentrations range from 103 to 106 grains/g. In the desert communities, arboreal pollen percentages are less than 5%. Although Chenopodiaceae and Artemisia still dominate the pollen assemblages, Ephedra, Tamaricaceae and Nitraria are also significant important in the pollen assemblages; total pollen concentrations are mostly less than 104grains/g. In the sub-alpine or high and cold meadow communities, arboreal pollen percentages are less than 30%. and Cyperaceae is one of the most significant-taxa in the pollen assemblages. In the shrub communities, the pollen assemblages are consistent with the zonal vegetation; shrub pollen percentages are mostly less than 20%, except for Artemisia and Hippophae rhamnoides communities.There are obvious trends for the pollen percentage ratios of Artemisia to Chenopodiaceae (A/C), Pinus to Artemisia (P/A) and arbor to non-arbor (AP/NAP) in the different ecological regions. In the temperate deciduous broad-leaved forest region, the P/A ratios are generally higher than 0.1, the A/C ratios higher than 2 and the AP/NAP ratios higher than 0.3. In the temperate steppe regions, the P/A ratios are generally less than 0.1, the A/C ratios higher than 1 and the AP/NAP ratios less than 0.1. In the temperate desert regions, the P/A ratios are generally less than 0.1, the A/C ratios less than 1, and the AP/NAP ratios less than 0.1.The study on the representation and indication of pollen to vegetation shows that Pinus, Artemisia, Betula, Chenopodiaceae, Ephedra, Selaginella sinensis etc. are over-representative in the pollen assemblages and can only indicate the regional vegetation. Some pollen types, such as Quercus, Carpinus, Picea, Abies, Elaeagus, Larix, Salix, Pterocelis, Juglans, Ulmus, Gleditsia, Cotinus, Oleaceae, Spiraea, Corylus, Ostryopsis, Vites, Tetraena, Caragana, Tamaricaceae, Zygophyllum, Nitraria, Cyperaceae, Sanguisorba etc. are under-representative in the pollen assemblages, and can indicate the plant communities well. Populus, Rosaceae, Saxifranaceae, Gramineae, Leguminosae, Compositae, Caprifoliaceae etc. can not be used as significant indicators to the plants.The study on the relation of pollen percentages with plant covers shows that Pinus pollen percentages are more than 30% where pine trees exist in the surrounding region. The Picea+Abies pollen percentages are higher than 20% where the Picea+Abies trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Larix pollen percentages vary from 5% to 20% where the Larix trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Betula pollen percentages are higher than 40% where the Betula trees are dominant in the communities" but less than 5% where the parent plants are sparse or absent. Quercus pollen percentages are higher than 10% where the Quercus trees are dominant in the communities, but less than 1% where the parent plants sparse or absent. Carpinus pollen percentages vary from 5% to 15% where the Carpinus trees are dominant in the communities, but less than 1% where the parent plants are sparse or absent. Populus pollen percentages are about 0-5% at pure Populus communities, but cannot be recorded easily where the Populus plants mixed with other trees in the communities. Juglans pollen accounts for 25% to 35% in the forest of Juglans mandshurica, but less than 1% where the parent plants are sparse or absent. Pterocelis pollen percentages are less than 15% where the Pterocelis trees are dominant in the communities, but cannot be recorded easily where the parent plants are sparse or absent. Ulmus pollen percentages are more than 8% at Ulmus communities, but less than 1% where the Ulmus plants mixed with other trees in the communities. Vitex pollen percentages increase along with increasing of parent plant covers, but the maximum values are less than 10 %. Caragana pollen percentages are less than 20 % where the Caragana plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent. Spiraea pollen percentages are less than 16 % where the Spiraea plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent.The study on the relation of surface pollen assemblages with the modern climate shows that, in the axis 1 of DCA, surface samples scores have significant correlation with the average annual precipitations, and the highest determination coefficient (R2) is 0.8 for the fitting result of the third degree polynomial functions. In the axis 2 of DCA, the samples scores have significant correlation with the average annual temperatures, average July temperatures and average January temperatures, and the determination coefficient falls in 0.13-0.29 for the fitting result of the third degree polynomial functions with the highest determination coefficient for the average July temperature.The sensitivity of the different pollen taxa to climate change shows that some pollen taxa such as Pinus, Quercus, Carpinus, Juglans, Spiraea, Oleaceae, Gramineae, Tamariaceae and Ephedra are only sensitive to the change in precipitation.
Resumo:
We present a constant-factor approximation algorithm for computing an embedding of the shortest path metric of an unweighted graph into a tree, that minimizes the multiplicative distortion.
Resumo:
Struyf, J., Dzeroski, S. Blockeel, H. and Clare, A. (2005) Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. In proceedings of the EPIA 2005 CMB Workshop
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Feature Significance for Fuzzy Decision Trees,' in Proceedings of the 2005 UK Workshop on Computational Intelligence, pp. 89-96, 2005.
Resumo:
An improved method for deformable shape-based image indexing and retrieval is described. A pre-computed index tree is used to improve the speed of our previously reported on-line model fitting method; simple shape features are used as keys in a pre-generated index tree of model instances. In addition, a coarse to fine indexing scheme is used at different levels of the tree to further improve speed while maintaining matching accuracy. Experimental results show that the speedup is significant, while accuracy of shape-based indexing is maintained. A method for shape population-based retrieval is also described. The method allows query formulation based on the population distributions of shapes in each image. Results of population-based image queries for a database of blood cell micrographs are shown.
Resumo:
Plant galls constitute a branch of study and research which has been to me a subject of much interest for some time. At the start of this work, it was intended to include Plant galls in general, but after some months this was found to be too comprehensive a field and would in fact take a great many years to study fully. Even leaf galls alone, both of herbs and trees provide so large a field of investigation that ultimately I decided to confine my attention to those or our native trees and shrubs. Upon looking up the literature on this subject, it will be found that in nearly all cases, either the gall is described fully and mere mention made or the agent concerned in its production, or vice versa. This state of things is most unsatisfactory, as in studying galls, both the gall-maker and the gall formation must be examined in detail before it is safe to apply nomenclature. This work, therefore, sets out to give accurate and scientific descriptions of both galls and gall-makers. The difficulties encountered are manifold; firstly, our trees are all deciduous, hence, the collecting period is necessarily restricted to that time of the year between the appearance of the buds and the fall of the leaf. Secondly, the rearing of imagines is always difficult, especially in the case or the autumn gall; more will be said on this matter later. Lastly, due to war-time conditions much trouble was experienced in obtaining suitable literature and many invaluable books on this subject were unprocurable. The Plates at the back have all been copied from original material except in the case or the Phytoptid mites which have been sketched with the help of illustrations, the reason for this being the difficulty of making suitable mounts of these minute creatures, Where possible all stages or at least larva and imago have been sketched, together with the host plant and the type of gall-formation produced. Slides have also been made of most larvae and the imagines attached to cards and pinned on to pith or cork in the usual manner.
Resumo:
BACKGROUND: The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. CONCLUSIONS/SIGNIFICANCE: Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.
Resumo:
New representations of tree-structured data objects, using ideas from topological data analysis, enable improved statistical analyses of a population of brain artery trees. A number of representations of each data tree arise from persistence diagrams that quantify branching and looping of vessels at multiple scales. Novel approaches to the statistical analysis, through various summaries of the persistence diagrams, lead to heightened correlations with covariates such as age and sex, relative to earlier analyses of this data set. The correlation with age continues to be significant even after controlling for correlations from earlier significant summaries.
Resumo:
Pollen, microscopic charcoal, palaeohydrological and dendrochronological analyses are applied to a radiocarbon and tephrochronologically dated mid Holocene (ca. 8500–3000 cal B.P.) peat sequence with abundant fossil Pinus (pine) wood. The Pinus populations on peat fluctuated considerably over the period in question. Colonisation by Pinus from ca. 7900–7600 cal B.P. appears to have had no specific environmental trigger; it was probably determined by the rate of migration from particular populations. The second phase, at ca. 5000–4400 cal B.P., was facilitated by anthropogenic interference that reduced competition from other trees. The pollen record shows two Pinus declines. The first at ca. 6200–5500 cal B.P. was caused by a series of rapid and frequent climatic shifts. The second, the so-called pine decline, was very gradual (ca. 4200–3300 cal B.P.) at Loch Farlary and may not have been related to climate change as is often supposed. Low intensity but sustained grazing pressures were more important. Throughout the mid Holocene, the frequency and intensity of burning in these open Pinus–Calluna woods were probably highly sensitive to hydrological (climatic) change. Axe marks on several trees are related to the mid to late Bronze Age, i.e., long after the trees had died.
Resumo:
Vestimentiferan tube worms living at deep-sea hydrothermal vents and cold seeps have been considered as a clade with a long and continuing evolutionary history in these ecosystems. Whereas the fossil record appears to support this view, molecular age estimates do not. The two main features that are used to identify vestimentiferan tubes in the fossil record are longitudinal ridges on the tube's surface and a tube wall constructed of multiple layers. It is shown here that chaetopterid tubes from modern vents and seeps—as well as a number of fossil tubes from shallow-water environments—also show these two features. This calls for a more cautious interpretation of tubular fossils from ancient vent and seep deposits. We suggest that: current estimates for a relatively young evolutionary age based on molecular clock methods may be more reliable than the inferences of ancient “vestimentiferans” based on putative fossils of these worms; not all of these putative fossils actually belong to this group; and that tubes from fossil seeps should be investigated for chitinous remains to substantiate claims of their potential siboglinid affinities.