937 resultados para Treatment target
Resumo:
Objectives: We compare the dose parameters between 3 different radiosurgery delivery techniques which may have an impact on cochlea function. Methods: Five patients with unilateral vestibular schwannoma (VS) were selected for this study. Planning procedure was carried out using the BrainLAB® iPlan planning system v. 4.5. For each patient three different planning techniques were used: dynamic arc (DA) with 5 arcs per plan, hybrid arc (HA) with 5 arcs per plan and IMRT with 8 fields per plan. For each technique, two plans were generated with different methods: with the first method (PTV coverage) it was the goal to fully cover the PTV with at least 12 Gy (normalization: 12 Gy covered 99% of the PTV) and with the second method (cochlea sparing) it was the goal to spare the cochlea (normalization: 12 Gy covers 50% of the PTV/V4Gy of cochlea lower than 1%). Plan evaluation was done considering target volume and coverage (conformity and homogeneity) and OAR constraints (mean (Dmean) and maximum dose (Dmax) to cochlea, Dmax to brainstem and cochlea). The total number of monitor units (MU) was analyzed. Results: The median tumor volume was 0.95 cm³ (range, 0.86-3 cm³). The median PTV was 1.44 cm³ (range, 1-3.5 cm³). The median distance between the tumor and the cochlea's modiulus was 2.7 mm (range, 1.8-6.3 mm). For the PTV coverage method, when we compared the cochlear dose in VS patients planned with DA, HA and IMRT, there were no significant differences in Dmax (p = 0.872) and in Dmean (p= 0.860). We found a significant correlation (p< 0.05) between the target volume and the cochlear Dmean for all plans with Pearson's coefficient correlation of 0.90, 0.92 and 0.94 for the DA, HA and IMRT techniques, respectively. For the cochlea sparing method, when we compared the cochlear dose in VS patients planned with DA, HA and IMRT, there were no significant differences in Dmax (p = 0.310) and in Dmean (p= 0.275). However, in this group the V4Gy of the ipsilateral cochlea represents less than 1%. When using the HA or IMRT technique, the homogeneity and conformity in the PTV, but also the number of MUs were increased in comparison to the DA technique. Conclusion: VS tumors that extend distally into the IAC had an equivalent sparing of cochlea with DA approach compared with the HA and IMRT techniques. Disclosure: No significant relationships.
Resumo:
Proton radiation therapy is gaining popularity because of the unique characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers the possibility of delivering high dose to the target while still sparing critical organs distal to the target. However, the high dose-gradient is a double-edged sword: a small shift of the highly conformal high-dose area can cause the target to be substantially under-dosed or the critical organs to be substantially over-dosed. Because of that, large margins are required in treatment planning to ensure adequate dose coverage of the target, which prevents us from realizing the full potential of proton beams. Therefore, it is critical to reduce uncertainties in the proton radiation therapy. One major uncertainty in a proton treatment is the range uncertainty related to the estimation of proton stopping power ratio (SPR) distribution inside a patient. The SPR distribution inside a patient is required to account for tissue heterogeneities when calculating dose distribution inside the patient. In current clinical practice, the SPR distribution inside a patient is estimated from the patient’s treatment planning computed tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR derived from a single CT number carries large uncertainties in the presence of human tissue composition variations, which is the major drawback of the current SPR estimation method. We propose to solve this problem by using dual energy CT (DECT) and hypothesize that the range uncertainty can be reduced by a factor of two from currently used value of 3.5%. A MATLAB program was developed to calculate the electron density ratio (EDR) and effective atomic number (EAN) from two CT measurements of the same object. An empirical relationship was discovered between mean excitation energies and EANs existing in human body tissues. With the MATLAB program and the empirical relationship, a DECT-based method was successfully developed to derive SPRs for human body tissues (the DECT method). The DECT method is more robust against the uncertainties in human tissues compositions than the current single-CT-based method, because the DECT method incorporated both density and elemental composition information in the SPR estimation. Furthermore, we studied practical limitations of the DECT method. We found that the accuracy of the DECT method using conventional kV-kV x-ray pair is susceptible to CT number variations, which compromises the theoretical advantage of the DECT method. Our solution to this problem is to use a different x-ray pair for the DECT. The accuracy of the DECT method using different combinations of x-ray energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured imaging uncertainties for each case. The kV-MV DECT was found to be the most robust against CT number variations. In addition, we studied how uncertainties propagate through the DECT calculation, and found general principles of selecting x-ray pairs for the DECT method to minimize its sensitivity to CT number variations. The uncertainties in SPRs estimated using the kV-MV DECT were analyzed further and compared to those using the stoichiometric method. The uncertainties in SPR estimation can be divided into five categories according to their origins: the inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the uncertainty in the mean excitation energy, and SPR variation with proton energy. Additionally, human body tissues were divided into three tissue groups – low density (lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately because their uncertainties were different under each condition. An estimate of the composite range uncertainty (2s) was determined for three tumor sites – prostate, lung, and head-and-neck, by combining the uncertainty estimates of all three tissue groups, weighted by their proportions along typical beam path for each treatment site. In conclusion, the DECT method holds theoretical advantages in estimating SPRs for human tissues over the current single-CT-based method. Using existing imaging techniques, the kV-MV DECT approach was capable of reducing the range uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach our original goal of reducing the range uncertainty by a factor of two. The dominant source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, especially in MV CT imaging. Further reduction in beam hardening effect, the impact of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT imaging. The kV-MV DECT still has the potential to reduce the range uncertainty further.
Resumo:
Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.
Resumo:
OBJECTIVES This study sought to determine the effect of rotational atherectomy (RA) on drug-eluting stent (DES) effectiveness. BACKGROUND DES are frequently used in complex lesions, including calcified stenoses, which may challenge DES delivery, expansion, and effectiveness. RA can adequately modify calcified plaques and facilitate stent delivery and expansion. Its impact on DES effectiveness is widely unknown. METHODS The ROTAXUS (Rotational Atherectomy Prior to TAXUS Stent Treatment for Complex Native Coronary Artery Disease) study randomly assigned 240 patients with complex calcified native coronary lesions to RA followed by stenting (n = 120) or stenting without RA (n = 120, standard therapy group). Stenting was performed using a polymer-based slow-release paclitaxel-eluting stent. The primary endpoint was in-stent late lumen loss at 9 months. Secondary endpoints included angiographic and strategy success, binary restenosis, definite stent thrombosis, and major adverse cardiac events at 9 months. RESULTS Despite similar baseline characteristics, significantly more patients in the standard therapy group were crossed over (12.5% vs. 4.2%, p = 0.02), resulting in higher strategy success in the rotablation group (92.5% vs. 83.3%, p = 0.03). At 9 months, in-stent late lumen loss was higher in the rotablation group (0.44 ± 0.58 vs. 0.31 ± 0.52, p = 0.04), despite an initially higher acute lumen gain (1.56 ± 0.43 vs. 1.44 ± 0.49 mm, p = 0.01). In-stent binary restenosis (11.4% vs. 10.6%, p = 0.71), target lesion revascularization (11.7% vs. 12.5%, p = 0.84), definite stent thrombosis (0.8% vs. 0%, p = 1.0), and major adverse cardiac events (24.2% vs. 28.3%, p = 0.46) were similar in both groups. CONCLUSIONS Routine lesion preparation using RA did not reduce late lumen loss of DES at 9 months. Balloon dilation with only provisional rotablation remains the default strategy for complex calcified lesions before DES implantation.
Resumo:
BACKGROUND To investigate the performance of the MI Sxscore in a multicentre randomised trial of patients undergoing primary percutaneous coronary intervention (PPCI). METHODS AND RESULTS The MI Sxscore was prospectively determined among 1132 STEMI patients enrolled into the COMFORTABLE AMI trial, which randomised patients to treatment with bare-metal (BMS) or biolimus-eluting (BES) stents. Patient- (death, myocardial infarction, any revascularisation) and device-oriented (cardiac death, target-vessel MI, target lesion revascularisation) major adverse cardiac events (MACEs) were compared across MI Sxscore tertiles and according to stent type. The median MI SXscore was 14 (IQR: 9-21). Patients were divided into tertiles of Sxscorelow (≤10), Sxscoreintermediate (11-18) and Sxscorehigh (≥19). At 1year, patient-oriented MACE occurred in 15% of the Sxscorehigh, 9% of the Sxscoreintermediate and 5% of the Sxscorelow tertiles (p<0.001), whereas device-oriented MACE occurred in 8% of the Sxscorehigh, 6% of the Sxscoreintermediate and 4% of the Sxscorelow tertiles (p=0.03). Addition of the MI Sxscore to the TIMI risk score improved prediction of patient- (c-statistic value increase from 0.63 to 0.69) and device-oriented MACEs (c-statistic value increase from 0.65 to 0.70). Differences in the risk for device-oriented MACE between BMS and BES were evident among Sxscorehigh (13% vs. 4% HR 0.33 (0.15-0.74), p=0.007 rather than those in Sxscorelow: 4% vs. 3% HR 0.68 (0.24-1.97), p=0.48) tertiles. CONCLUSIONS The MI Sxscore allows risk stratification of patient- and device-oriented MACEs among patients undergoing PPCI. The addition of the MI Sxscore to the TIMI risk score is of incremental prognostic value among patients undergoing PPCI for treatment of STEMI.
Resumo:
PURPOSE Hodgkin lymphoma (HL) is a highly curable disease. Reducing late complications and second malignancies has become increasingly important. Radiotherapy target paradigms are currently changing and radiotherapy techniques are evolving rapidly. DESIGN This overview reports to what extent target volume reduction in involved-node (IN) and advanced radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT) and proton therapy-compared with involved-field (IF) and 3D radiotherapy (3D-RT)- can reduce high doses to organs at risk (OAR) and examines the issues that still remain open. RESULTS Although no comparison of all available techniques on identical patient datasets exists, clear patterns emerge. Advanced dose-calculation algorithms (e.g., convolution-superposition/Monte Carlo) should be used in mediastinal HL. INRT consistently reduces treated volumes when compared with IFRT with the exact amount depending on the INRT definition. The number of patients that might significantly benefit from highly conformal techniques such as IMRT over 3D-RT regarding high-dose exposure to organs at risk (OAR) is smaller with INRT. The impact of larger volumes treated with low doses in advanced techniques is unclear. The type of IMRT used (static/rotational) is of minor importance. All advanced photon techniques result in similar potential benefits and disadvantages, therefore only the degree-of-modulation should be chosen based on individual treatment goals. Treatment in deep inspiration breath hold is being evaluated. Protons theoretically provide both excellent high-dose conformality and reduced integral dose. CONCLUSION Further reduction of treated volumes most effectively reduces OAR dose, most likely without disadvantages if the excellent control rates achieved currently are maintained. For both IFRT and INRT, the benefits of advanced radiotherapy techniques depend on the individual patient/target geometry. Their use should therefore be decided case by case with comparative treatment planning.
Resumo:
PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.
Resumo:
OBJECTIVES This study sought to describe the frequency and clinical impact of acute scaffold disruption and late strut discontinuity of the second-generation Absorb bioresorbable polymeric vascular scaffolds (Absorb BVS, Abbott Vascular, Santa Clara, California) in the ABSORB (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions) cohort B study by optical coherence tomography (OCT) post-procedure and at 6, 12, 24, and 36 months. BACKGROUND Fully bioresorbable scaffolds are a novel approach to treatment for coronary narrowing that provides transient vessel support with drug delivery capability without the long-term limitations of metallic drug-eluting stents. However, a potential drawback of the bioresorbable scaffold is the potential for disruption of the strut network when overexpanded. Conversely, the structural discontinuity of the polymeric struts at a late stage is a biologically programmed fate of the scaffold during the course of bioresorption. METHODS The ABSORB cohort B trial is a multicenter single-arm trial assessing the safety and performance of the Absorb BVS in the treatment of 101 patients with de novo native coronary artery lesions. The current analysis included 51 patients with 143 OCT pullbacks who underwent OCT at baseline and follow-up. The presence of acute disruption or late discontinuities was diagnosed by the presence on OCT of stacked, overhung struts or isolated intraluminal struts disconnected from the expected circularity of the device. RESULTS Of 51 patients with OCT imaging post-procedure, acute scaffold disruption was observed in 2 patients (3.9%), which could be related to overexpansion of the scaffold at the time of implantation. One patient had a target lesion revascularization that was presumably related to the disruption. Of 49 patients without acute disruption, late discontinuities were observed in 21 patients. There were no major adverse cardiac events associated with this finding except for 1 patient who had a non-ischemia-driven target lesion revascularization. CONCLUSIONS Acute scaffold disruption is a rare iatrogenic phenomenon that has been anecdotally associated with anginal symptoms, whereas late strut discontinuity is observed in approximately 40% of patients and could be viewed as a serendipitous OCT finding of a normal bioresorption process without clinical implications. (ABSORB Clinical Investigation, Cohort B [ABSORB B]; NCT00856856).
Resumo:
The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.
Resumo:
PurposeTo assess clinical outcomes and patterns of loco-regional failure (LRF) in relation to clinical target volumes (CTV) in patients with locally advanced hypopharyngeal and laryngeal squamous cell carcinoma (HL-SCC) treated with definitive intensity modulated radiotherapy (IMRT) and concurrent systemic therapy.MethodsData from HL-SCC patients treated from 2007 to 2010 were retrospectively evaluated. Primary endpoint was loco-regional control (LRC). Secondary endpoints included local (LC) and regional (RC) controls, distant metastasis free survival (DMFS), laryngectomy free survival (LFS), overall survival (OS), and acute and late toxicities. Time-to-event endpoints were estimated using Kaplan-Meier method, and univariate and multivariate analyses were performed using Cox proportional hazards models. Recurrent gross tumor volume (RTV) on post-treatment diagnostic imaging was analyzed in relation to corresponding CTV (in-volume, > 95% of RTV inside CTV; marginal, 20¿95% inside CTV; out-volume, < 20% inside CTV).ResultsFifty patients (stage III: 14, IVa: 33, IVb: 3) completed treatment and were included in the analysis (median follow-up of 4.2 years). Three-year LRC, DMFS and overall survival (OS) were 77%, 96% and 63%, respectively. Grade 2 and 3 acute toxicity were 38% and 62%, respectively; grade 2 and 3 late toxicity were 23% and 15%, respectively. We identified 10 patients with LRF (8 local, 1 regional, 1 local¿+¿regional). Six out of 10 RTVs were fully included in both elective and high-dose CTVs, and 4 RTVs were marginal to the high-dose CTVs.ConclusionThe treatment of locally advanced HL-SCC with definitive IMRT and concurrent systemic therapy provides good LRC rates with acceptable toxicity profile. Nevertheless, the analysis of LRFs in relation to CTVs showed in-volume relapses to be the major mode of recurrence indicating that novel strategies to overcome radioresistance are required.
Resumo:
INTRODUCTION AND OBJECTIVES There is continued debate about the routine use of aspiration thrombectomy in patients with ST-segment elevation myocardial infarction. Our aim was to evaluate clinical and procedural outcomes of aspiration thrombectomy-assisted primary percutaneous coronary intervention compared with conventional primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. METHODS We performed a meta-analysis of 26 randomized controlled trials with a total of 11 943 patients. Clinical outcomes were extracted up to maximum follow-up and random effect models were used to assess differences in outcomes. RESULTS We observed no difference in the risk of all-cause death (pooled risk ratio = 0.88; 95% confidence interval, 0.74-1.04; P = .124), reinfarction (pooled risk ratio = 0.85; 95% confidence interval, 0.67-1.08; P = .176), target vessel revascularization (pooled risk ratio = 0.86; 95% confidence interval, 0.73-1.00; P = .052), or definite stent thrombosis (pooled risk ratio = 0.76; 95% confidence interval, 0.49-1.16; P = .202) between the 2 groups at a mean weighted follow-up time of 10.4 months. There were significant reductions in failure to reach Thrombolysis In Myocardial Infarction 3 flow (pooled risk ratio = 0.70; 95% confidence interval, 0.60-0.81; P < .001) or myocardial blush grade 3 (pooled risk ratio = 0.76; 95% confidence interval, 0.65-0.89; P = .001), incomplete ST-segment resolution (pooled risk ratio = 0.72; 95% confidence interval, 0.62-0.84; P < .001), and evidence of distal embolization (pooled risk ratio = 0.61; 95% confidence interval, 0.46-0.81; P = .001) with aspiration thrombectomy but estimates were heterogeneous between trials. CONCLUSIONS Among unselected patients with ST-segment elevation myocardial infarction, aspiration thrombectomy-assisted primary percutaneous coronary intervention does not improve clinical outcomes, despite improved epicardial and myocardial parameters of reperfusion. Full English text available from:www.revespcardiol.org/en.
Resumo:
PURPOSE To investigate the 2-year technical and clinical results of primary nitinol stent placement in comparison with percutaneous transluminal angioplasty (PTA) in the treatment of de novo lesions of the popliteal artery. METHODS The ETAP study (Endovascular Treatment of Atherosclerotic Popliteal Artery Lesions: balloon angioplasty vs. primary stenting; www.ClinicalTrials.gov identifier NCT00712309) is a prospective, randomized trial that enrolled 246 patients (158 men; mean age 72 years) who were randomly assigned to receive a nitinol stent (n=119) or PTA (n=127) for lesions averaging 42.3 mm in length. The results of the primary study endpoint were published. Secondary outcome measures and endpoints included primary patency (freedom from duplex-detected target lesion restenosis), target lesion revascularization (TLR), secondary patency, changes in ankle-brachial index and Rutherford class, and event-free survival (freedom from target limb amputation, TLR, myocardial infarction, and death). RESULTS In total, 183 patients (89 stent and 94 PTA) were available for the 2-year analysis. The primary patency rate was significantly higher in the stent group (64.2%) than in the PTA group (31.3%, p=0.0001). TLR rates were 22.4% and 59.5%, respectively (p=0.0001). When provisional stent placement in the PTA arm was not considered as TLR and loss in patency, the differences prevailed between the study groups but were not significant (64.2% vs. 56.1% for primary patency, respectively; p=0.44). A significant improvement in ABI and Rutherford category was observed at 2 years in both groups. CONCLUSION In treatment of obstructive popliteal artery lesions, provisional stenting reveals equivalent patency in comparison to primary stenting. However, the 2-year results of this trial suggest the possibility of a shift toward higher patency rates in favor of primary stenting.
Resumo:
BACKGROUND Magnetic resonance imaging (MRI) of the prostate is considered to be the most precise noninvasive staging modality for localized prostate cancer. Multiparametric MRI (mpMRI) dynamic sequences have recently been shown to further increase the accuracy of staging relative to morphological imaging alone. Correct radiological staging, particularly the detection of extraprostatic disease extension, is of paramount importance for target volume definition and dose prescription in highly-conformal curative radiotherapy (RT); in addition, it may affect the risk-adapted duration of additional antihormonal therapy. The purpose of our study was to analyze the impact of mpMRI-based tumor staging in patients undergoing primary RT for prostate cancer. METHODS A total of 122 patients admitted for primary RT for prostate cancer were retrospectively analyzed regarding initial clinical and computed tomography-based staging in comparison with mpMRI staging. Both tumor stage shifts and overall risk group shifts, including prostate-specific antigen (PSA) level and the Gleason score, were assessed. Potential risk factors for upstaging were tested in a multivariate analysis. Finally, the impact of mpMRI-based staging shift on prostate RT and antihormonal therapy was evaluated. RESULTS Overall, tumor stage shift occurred in 55.7% of patients after mpMRI. Upstaging was most prominent in patients showing high-risk serum PSA levels (73%), but was also substantial in patients presenting with low-risk PSA levels (50%) and low-risk Gleason scores (45.2%). Risk group changes occurred in 28.7% of the patients with consequent treatment adaptations regarding target volume delineation and duration of androgen deprivation therapy. High PSA levels were found to be a significant risk factor for tumor upstaging and newly diagnosed seminal vesicle infiltration assessed using mpMRI. CONCLUSIONS Our findings suggest that mpMRI of the prostate leads to substantial tumor upstaging, and can considerably affect treatment decisions in all patient groups undergoing risk-adapted curative RT for prostate cancer.
Resumo:
BACKGROUND Historically, percutaneous coronary intervention (PCI) of bifurcation lesions was associated with worse procedural and clinical outcomes when compared with PCI of non-bifurcation lesions. Newer generation drug-eluting stents (DES) might improve long-term clinical outcomes after bifurcation PCI. METHODS AND RESULTS The LEADERS trial was a 10-center, assessor-blind, non-inferiority, all-comers trial, randomizing 1,707 patients to treatment with a biolimus A9(TM) -eluting stent (BES) with an abluminal biodegradable polymer or a sirolimus-eluting stent (SES) with a durable polymer (ClinicalTrials.gov Identifier: NCT00389220). Five-year clinical outcomes were compared between patients with and without bifurcation lesions and between BES and SES in the bifurcation lesion subgroup. There were 497 (29%) patients with at least 1 bifurcation lesion (BES = 258; SES = 239). At 5-year follow-up, the composite endpoint of cardiac death, myocardial infarction (MI) and clinically-indicated (CI) target vessel revascularization (TVR) was observed more frequently in the bifurcation group (26.6% vs. 22.4%, P = 0.049). Within the bifurcation lesion subgroup, no differences were observed in (cardiac) death or MI rates between BES and SES. However, CI target lesion revascularization (TLR) (10.1% vs. 15.9%, P = 0.0495), and CI TVR (12.0% vs. 19.2%, P = 0.023) rates were significantly lower in the BES group. Definite/probable stent thrombosis (ST) rate was numerically lower in the BES group (3.1% vs. 5.9%, P = 0.15). Very late (>1 year) definite/probable ST rates trended to be lower with BES (0.4% vs. 3.1%, P = 0.057). CONCLUSIONS In the treatment of bifurcation lesions, use of BES led to superior long-term efficacy compared with SES. Safety outcomes were comparable between BES and SES, with an observed trend toward a lower rate of very late definite/probable ST between 1 and 5 years with the BES. © 2015 Wiley Periodicals, Inc.
Resumo:
BACKGROUND 2013 AHA/ACC guidelines on the treatment of cholesterol advised to tailor high-intensity statin after ACS, while previous ATP-III recommended titration of statin to reach low-density lipoprotein cholesterol (LDL-C) targets. We simulated the impact of this change of paradigm on the achievement of recommended targets. METHODS Among a prospective cohort study of consecutive patients hospitalized for ACS from 2009 to 2012 at four Swiss university hospitals, we analyzed 1602 patients who survived one year after recruitment. Targets based on the previous guidelines approach was defined as (1) achievement of LDL-C target < 1.8 mmol/l, (2) reduction of LDL-C ≥ 50% or (3) intensification of statin in patients who did not reach LDL-C targets. Targets based on the 2013 AHA/ACC guidelines approach was defined as the maximization of statin therapy at high-intensity in patients aged ≤75 years and moderate- or high-intensity statin in patients >75 years. RESULTS 1578 (99%) patients were prescribed statin at discharge, with 1120 (70%) at high-intensity. 1507 patients (94%) reported taking statin at one year, with 909 (57%) at high-intensity. Among 482 patients discharged with sub-maximal statin, intensification of statin was only observed in 109 patients (23%). 773 (47%) patients reached the previous LDL-C targets, while 1014 (63%) reached the 2013 AHA/ACC guidelines targetsone year after ACS (p value < 0.001). CONCLUSION The application of the new 2013 AHA/ACC guidelines criteria would substantially increase the proportion of patients achieving recommended lipid targets one year after ACS. Clinical trial number, NCT01075868.