920 resultados para Transgenic organisms
Resumo:
Transgenic Laminaria japonica gametophytes producing a recombinant tissue-type plasminogen activator (rtPA) protein, which is an effective third-generation thrombolytic agent for acute myocardial infarction (AMI), were cultured in an illuminated bubble column bioreactor. A maximum final dry cell weight of 1120 mg l(-1) was obtained in batch culture with an initial dry cell weight of 126 mg l(-1) and with aeration rate of 1.2 l air min(-1) l(-1) culture, nitrate at 1.5 mM and phosphate at 0.17 mM. The yield of rtPA was 56 mu g g(-1) dry cell wt. This is the first report regarding cultivation of a transgenic macroalga in a bioreactor.
Resumo:
PS I, PS II and light-harvesting complexes (LHC) in oxygen evolving photosynthetic organisms were reviewed. These organisms include cyanobacteria, red algae, brown algae, diatoms, chrysophytes, dinophytes, xanthophytes, crypophytes, green algae and green plants. The diversity of pigment-protein complexes that fuel the conversion of radiant energy to chemical bond energy was highlighted, and the evolutionary relationships among the LHC structural polypeptides and the characteristics of the fluorescence emission of PS I at 77 K was discussed.
Resumo:
Scanning electron microscopy of the surfaces of the seaweeds Laminaria japonica, haploid Porphyra yezoensis, Ulva pertusa and the diploid conchocelis of P. yezoensis and P. haitanensis revealed Vibrio and Micrococcus to be abundant on the surfaces of U. pertusa and P. yezoensis. Vibrio, Flavobacterium, Pseudomonas, Staphylococcus, Bacillus, Corynebacterium and other genera were isolated from the surfaces of L. japonica.
Resumo:
Batch cultivation for transgenic kelp gametophyte cells was investigated in an online controlled 5 L stirred-tank photo-bioreactor to rapidly optimize the process conditions by monitoring the rate of increase of pH. The transgenic kelp gametophytes with heterologous gene encoding hepatitis B surface antigen (HBsAg) could rapidly grow in the bioreactor. Optimal temperature and agitation rate for bioreactor cultivation of gametophytes were 15 degrees C and 200 rpm. Optimal incident light intensities depended on the initial cell densities. (c) 2006 Elsevier B.V. All fights reserved.
Resumo:
Carbon isotopes of individual lipids in typical organisms from the Nansha sea area were measured by the GC-IRMS analytical technique. delta(13)C values of saturated fatty acids in different organisms examined are from -25.6parts per thousand to -29.7parts per thousand with the average values ranging from -26.4parts per thousand to -28.2parts per thousand and the variance range of 11.8parts per thousand, between different organisms is also observed. Unsaturated fatty acids have heavy carbon isotopic compositions and the mean differences of 2.9%.9-6.8parts per thousand compared to the same carbon number saturated fatty acids. delta(13)C values of n-alkanes range from -27.5%o to -29.7parts per thousand and their mean values, ranging from -28.6parts per thousand, to -28.9parts per thousand, are very close in different organisms. The mean difference in delta(13)C between the saturated fatty acids and n-alkanes is only 1.5parts per thousand, indicating that they have similar biosynthetic pathways. The carbon isotopic variations between the different carbon-number lipids are mostly within +/-2.0parts per thousand, reflecting that they experienced a biosynthetic process of the carbon chain elongation. At the same time, the carbon isotopic genetic relationships between the biological and sedimentary lipids are established by comparative studies of carbon isotopic compositions of individual lipids in organisms and sediments from the Nansha sea area, which provides scientific basis for carbon isotopic applied research of individual lipids.
Resumo:
An improved method for the determination of phosphorus in natural waters, aquatic organisms and sediments by ignition method is proposed. The recoveries of phosphorus (P) from selected inorganic and organic P-containing compound standards after ignition with different auxiliaries, such as MgSO4, Mg(NO3)(2), MgO2, Mg(Ac-2) and CaCl2, were compared. We found that the phosphorus from most compound standards could not be completely recovered when these compounds were ignited (450-500degreesC) with the MgSO4 as auxiliary and the baked residue was extracted with 0.2 mol l(-1) HCl for 30min at 80degreesC or at room temperature. P recoveries, for example, were poor, less than 85%, if pyrophosphate and metaphosphate were ignited with the addition Of MgSO4 prior to the extraction of the baked residue with 0.2 mol l(-1) HCl at 80degreesC for 30 min. In contrast, MgO2, Mg(Ac)(2) and CaCl2, as well as Mg(NO3)(2), could all yield complete P recoveries at routine ashing temperatures (450-500degreesC). The results demonstrate that MgC12 is a more effective auxiliary agent for the determination of phosphorus in natural waters, aquatic organisms and sediments by ignition method than MgSO4 which is commonly used. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Surface modification of montmorillonite by means of Mg2+ insertion reaction has been studied and a positively charged montmorillonite has been prepared. The effects of preparation temperature and Mg2+ concentration on the positive charge property of the clay and on the clay coagulating Heterosigma akashiwo have been studied. The results showed that the modified clay enhanced the coagulation and the used amount decreased to 1/5-1/10 of the original. The removal rates of Heterosigma akashiwo were correlated positively with positive charge on the clay in accordance with theoretical model.
Resumo:
We used nested-polymerase chain reaction (PCR) to detect Roundup Ready soybean in aquatic feeds and feeding tilapias. A template concentration of 10(-10) g mu L-1 DNA solution could be detected with a dilute degree of 0.01%. Most (90.6%) of the aquatic feeds containing soybean byproduct included exogenous DNA segments. We also compared genetically modified (GM) soybean with non-GM soybean diets in feeding tilapias (Oreochromis niloticus, GIFT strain) and examined the residual fragments (254 bp) of GM soybeans. Tilapias receiving GM soybean diets had DNA fragments in different tissues and organs, indicating that exogenous GM genes were absorbed systemically and not completely degraded by the tilapia's alimentary canal.
Resumo:
Fluctuating light intensity had a more significant impact on growth of gametophytes of transgenic Laminaria japonica in a 2500 ml bubble-column bioreactor than constant light intensity. A fluctuating light intensity between 10 and 110 mu E m(-2) s(-1), with a photoperiod of 14 h:10 h light:dark, was the best regime for growth giving 1430 mg biomass l(-1).
Resumo:
Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.
Resumo:
This report describes the identification of a novel protein named PS1D (Genbank accession number ), which is composed of an S1-like RNA-binding domain, a (cysteine)x3-(histidine) CCCH-zinc finger, and a very basic carboxyl domain. PS1D is expressed as two isoforms, probably resulting from the alternative splicing of mRNA. The long PS1D isoform differs from the short one by the presence of 48 additional amino acids at its amino-terminal extremity. Analysis of PS1D subcellular distribution by cell fractionation reveals that this protein belongs to the core of the eukaryotic 60S ribosomal subunit. Interestingly, PS1D protein is a highly conserved protein among mammalians as murine, human, and simian PS1D homologues share more than 95% identity. In contrast, no homologous protein is found in lower eukaryotes such as yeast and Caenorhabditis elegans. These observations indicate that PS1D is the first eukaryotic ribosomal protein that is specific to higher eukaryotes.
Resumo:
BACKGROUND: Stimulation of beta(1)- and beta(2)-adrenergic receptors (ARs) in the heart results in positive inotropy. In contrast, it has been reported that the beta(3)AR is also expressed in the human heart and that its stimulation leads to negative inotropic effects. METHODS AND RESULTS: To better understand the role of beta(3)ARs in cardiac function, we generated transgenic mice with cardiac-specific overexpression of 330 fmol/mg protein of the human beta(3)AR (TGbeta(3) mice). Hemodynamic characterization was performed by cardiac catheterization in closed-chest anesthetized mice, by pressure-volume-loop analysis, and by echocardiography in conscious mice. After propranolol blockade of endogenous beta(1)- and beta(2)ARs, isoproterenol resulted in an increase in contractility in the TGbeta(3) mice (30%), with no effect in wild-type mice. Similarly, stimulation with the selective human beta(3)AR agonist L-755,507 significantly increased contractility in the TGbeta(3) mice (160%), with no effect in wild-type mice, as determined by hemodynamic measurements and by end-systolic pressure-volume relations. The underlying mechanism of the positive inotropy incurred with L-755,507 in the TGbeta(3) mice was investigated in terms of beta(3)AR-G-protein coupling and adenylyl cyclase activation. Stimulation of cardiac membranes from TGbeta(3) mice with L-755,507 resulted in a pertussis toxin-insensitive 1.33-fold increase in [(35)S]GTPgammaS loading and a 1.6-fold increase in adenylyl cyclase activity. CONCLUSIONS: Cardiac overexpression of human beta(3)ARs results in positive inotropy only on stimulation with a beta(3)AR agonist. Overexpressed beta(3)ARs couple to G(s) and activate adenylyl cyclase on agonist stimulation.
Resumo:
BACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.
Resumo:
To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.