963 resultados para Transformation induced plasticity steel


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrafine grain sizes were produced using hot torsion testing of a 0.11C-1.68Mn-0.20Si (wt-%) steel, with ultrafine ferrite (<1 µm) nucleating intragranularly during testing by dynamic strain induced transformation. A systematic study was made of the effect of isothermal deformation temperature, strain level, strain rate, and accelerated cooling during deformation on the formation of ultrafine ferrite by this process. Decreasing the isothermal testing temperature below the Ae3 temperature led to a greater driving force for ferrite nucleation and thus more extensive nucleation during testing; the formation of Widmanstätten ferrite prior to, or early during, deformation imposed a lower temperature limit. Increasing the strain above that where ferrite first began 0.8 at 675C and a strain rate of 3 s¯1 increased the intragranular nucleation of ferrite. Strain rate appeared to have little effect on the amount of ferrite formed. However, slower strain rates led to extensive polygonisation of the ferrite formed because more time was available for ferrite recovery. Accelerated cooling during deformation followed by air cooling to room temperature led to a uniform microstructure consisting of very fine ferrite grains and fine spherical carbides located in the grain boundaries regions. Air cooling after isothermal testing led to carbide bands and a larger ferrite grain size.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The scope of this study was to examine the effects of plane strain prestrain, induced via cold-rolling, and subsequent automotive paint bake hardening cycle on both tensile and fatigue properties of a hot rolled TRIP780 multiphase steel. Strain-life data has been generated for as-received (0% prestrain), 10% and 20% prestrained samples, in both baked and unbaked conditions. Cold rolling  increased the number of strain reversals to failure at high cyclic strain amplitudes with no effect at low strain amplitudes. Bake hardening increased the number of reversals to failure at high cyclic strain amplitudes. The prestrained material exhibited partial cyclic softening, with some residual strength increase. The residual strength increase was attributed to the austenite to martensite transformation that occurred during the prestraining process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the current study, the role of dynamic strain induced transformation on ferrite grain refinement was investigated using different thermomechanical processing routes. A Ni-30Fe austenitic model alloy was also employed to study the evolution of the deformation structure under different deformation conditions. It was shown that the extreme refinement of ferrite is more likely due to the formation of extensive high angle intragranular defects in the austenite through deformation. Among the different thermomechanical parameters, the deformation temperature had a significant effect on the intragranular defect characteristics. There was a transition where the cell dislocation structure changed to laminar microband structures with a decrease in the deformation temperature. Moreover, the ultrafine grained structure was also successfully produced through static transformation using warm deformation process; in other words, concurrent deformation and transformation are not necessary for ultrafine ferrite formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ti-5553 is a relatively new titanium alloy with applications particularly in the aerospace industry for such key structural components as landing gear. However, during machining of Ti-5553, the elevated temperature and high strain at tool-workpiece interface may alter workpiece microstructure and result in ß to a phase transformation. During phase transformation, some intermediated phase such as w phase may form which is brittle and hard to machine, and it could reduce the fatigue life of machined components. The aim of this research work is to optimize the machining condition for Ti-5553, in which its hot deformation behavior in terms of ß to a phase transformation could be fully understood. Analysis of variables such as micrographs of phase components and cutting zone temperature demonstrates that the cutting temperature governs the formation of final phase components and to some extent this variation has been quantified to allow for further and more detailed investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200°C for 10 days to form a nano-scale bainitic microstructure consisting of nanobainitic ferrite laths with high dislocation density and retained austenite films. The crystallographic analysis using TEM and EBSD revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with the parent austenite. There was only one type of packet identified in a given transformed austenite grain. Each packet consisted of two different blocks having variants with the same habit plane, but different crystallographic orientations. The presence of fine C-rich clusters and Fe-C carbides with a wide range of compositions in bainitic ferrite was revealed by Three-dimensional Atom Probe Tomography (APT). The high carbon content of bainitic ferrite compared to the para-equilibrium level of carbon in ferrite, absence of segregation of carbon to the austenite/bainitic ferrite interface and absence of partitioning of substitutional elements between the retained austenite and bainitic ferrite were also found using APT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The data includes EBSD orientation maps of the specimens preheated at 1200 degrees celsius, and deformed at 1100 degrees celsius with 30% reduction and control cooled at the rates of 1, 18, and 95 degrees per second. The resultant microstructures correspond to quasipolygonal ferrite plus granular bainite, and lath bainite, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed “acicular ferrite”) produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work investigated the evolution of strain-induced NbC precipitates in a model austenitic Fe-30Ni-Nb steel deformed at 925 °C to a strain of 0.2 during post-deformation holding between 3 and 1000 s and their effect on the reloading flow stress. The precipitate particles preferentially nucleated on the nodes of the periodic dislocation networks constituting microband walls. Holding for 10 s resulted in the formation of fine, largely coherent NbC particles with a mean diameter of ∼5 nm, which displayed a cube-on-cube orientation relationship with austenite and caused the maximum increase in the reloading steady-state flow stress. A further increase in the holding time from 30 to 1000 s led to the formation of semi-coherent, gradually coarser and more widely spaced particles with a mean diameter of 8 nm and above, which led to a gradual decrease in the reloading steady-state flow stress. The holding time increase resulted in progressive disintegration of the dislocation substructure and dislocation annihilation through static recovery processes, which was also reflected by the measured softening fractions. The precipitate particle shape changed during post-deformation annealing from elliptical to faceted octahedral and subsequently to tetra-kai-decahedral. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Austempered Ductile Iron (ADI) is a type of nodular, ductile cast iron subjected to heat treatments-austenitising and austempering. Whilst machining is conducted prior to heat treatment and offers no significant difficulty, machining post heat treatment is demanding and often avoided. Phase transformation of retained austenite to martensite leading to poor machinability characteristics is a common problem experienced during machining. Study of phase transformations is an investigative study on the factors-plastic strain (εp) and thermal energy (Q) which effect phase transformations during machining. The experimental design consists of face milling grade 1200 at variable Depth of Cut (DoC) range from 1 to 4 mm, coolant on/off, at constant speed, 1992 rpm and feed rate, 0.1 mm/tooth. Plastic strain (εp) and martensite content (M) at fracture point for each grade was evaluated by tensile testing. The effect of thermal energy (Q) on phase transformations was also verified through temperature measurements at DoC 3 and 1 mm using thermocouples embedded into the workpiece. Finally, the amount of plastic strain (εp) and thermal energy (Q) responsible for a given martensite increase (M) during milling was related and calculated using a mathematical function, M=f (εp, Q). The future work of the thesis involves an in-depth study on the new link discovered through this research: mathematical model relating the role of plastic strain and thermal energy in martensite formation.