926 resultados para Transcranial direct current stimulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Analisar a eficiência do tratamento com a estimulação elétrica de alta voltagem (EEAV) em três diferentes locais, aplicada precocemente na regeneração do nervo ciático submetido à lesão por esmagamento, e avaliada através do índice funcional do ciático (IFC), em ratos. MÉTODO: Após o esmagamento, 57 ratos foram submetidos à EEAV catódica nos parâmetros: frequência de 50Hz, 100V de tensão, 20 minutos diários, 5 dias por semana. Os ratos foram divididos aleatoriamente em: grupo controle; grupo gânglio; grupo gânglio + músculo; grupo músculo e; grupo simulado. O IFC foi avaliado semanalmente durante sete semanas, partindo do pré-operatório até a 6ª semana pós-operatória. RESULTADOS: Em comparação ao grupo controle, os resultados mostraram desempenho significativamente superior do grupo gânglio nas três primeiras semanas, e do grupo gânglio + músculo na 3ª semana, enquanto o grupo músculo teve desempenho significativamente negativo na 4ª e 6ª semanas. CONCLUSÃO: a EEAV aplicada precocemente, foi positiva no tratamento da região da medula e gânglio da raiz nervosa do ciático com o eletrodo dispersivo na região lombar contralateral ou no músculo gastrocnêmio. Porém, proporcionou efeitos negativos no tratamento com eletrodo ativo no músculo gastrocnêmio e dispersivo na coxa contralateral. Nível de evidência II, Estudo prospectivo comparativo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research project is to continue exploring the Montandon Long-Term Hydrologic Research Site(LTHR) by using multiple geophysical methods to obtain more accurate and precise information regarding subsurface hydrologic properties of a local gravel ridge,which are important to both the health of surrounding ecosystems and local agriculture. Through using non-invasive geophysical methods such as seismic refraction, Direct Current resistivity and ground penetrating radar (GPR) instead of invasive methods such as boreholedrilling which displace sediment and may alter water flow, data collection is less likely to bias the data itself. In addition to imaging the gravel ridge subsurface, another important researchpurpose is to observe how both water table elevation and the moisture gradient (moisture content of the unsaturated zone) change over a seasonal time period and directly after storm events. The combination of three types of data collection allows the strengths of each method combine together and provide a relatively strongly supported conclusions compared to previous research. Precipitation and geophysical data suggest that an overall increase in precipitation during the summer months causes a sharp decrease in subsurface resistivity within the unsaturated zone. GPR velocity data indicate significant immediate increase in moisture content within the shallow vadose zone (< 1m), suggesting that rain water was infiltrating into the shallow subsurface. Furthermore, the combination of resistivity and GPR results suggest that the decreased resistivity within the shallow layers is due to increased ion content within groundwater. This is unexpected as rainwater is assumed to have a DC resistivity value of 3.33*105 ohm-m. These results may suggest that ions within the sediment must beincorporated into the infiltrating water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the validity of multi-fiber muscle velocity recovery cycles (VRCs) recorded by direct muscle stimulation with submaximal stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech melody or prosody subserves linguistic, emotional, and pragmatic functions in speech communication. Prosodic perception is based on the decoding of acoustic cues with a predominant function of frequency-related information perceived as speaker's pitch. Evaluation of prosodic meaning is a cognitive function implemented in cortical and subcortical networks that generate continuously updated affective or linguistic speaker impressions. Various brain-imaging methods allow delineation of neural structures involved in prosody processing. In contrast to functional magnetic resonance imaging techniques, DC (direct current, slow) components of the EEG directly measure cortical activation without temporal delay. Activation patterns obtained with this method are highly task specific and intraindividually reproducible. Studies presented here investigated the topography of prosodic stimulus processing in dependence on acoustic stimulus structure and linguistic or affective task demands, respectively. Data obtained from measuring DC potentials demonstrated that the right hemisphere has a predominant role in processing emotions from the tone of voice, irrespective of emotional valence. However, right hemisphere involvement is modulated by diverse speech and language-related conditions that are associated with a left hemisphere participation in prosody processing. The degree of left hemisphere involvement depends on several factors such as (i) articulatory demands on the perceiver of prosody (possibly, also the poser), (ii) a relative left hemisphere specialization in processing temporal cues mediating prosodic meaning, and (iii) the propensity of prosody to act on the segment level in order to modulate word or sentence meaning. The specific role of top-down effects in terms of either linguistically or affectively oriented attention on lateralization of stimulus processing is not clear and requires further investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

F90927 is a newly developed cardioactive drug with a steroid-like structure. It acts directly and agonistically on the cardiac L-type Ca2+ channel by shifting its voltage-dependent activation toward more negative potentials. This leads to an increased influx of Ca2+ and, therefore, to a stronger contraction; however, no arrhythmias occur. Calcium current stimulation can already be observed at nanomolar concentrations, but higher concentrations of F90927 elevate intracellular Ca2+ concentration, causing a reduction of the myocardial compliance and an increased diastolic blood pressure. Vessels also react to F90927 and contract in its presence. Binding of F90927 with the L-type Ca2+ channel presumably occurs in the vicinity of the transmembrane domains III and IV of the alpha1 subunit. F90927 exhibits no use dependence and interacts with Ca2+ channel inhibitors of all three known classes of channel modulators (dihydropyridines, phenylalkylamines, and benzothiazepines), suggesting that it is a member of a new class of Ca2+ channel modulators. Due to its adverse effects on blood pressure and vessel contraction, F90927 is not an ideal drug candidate. It has, however, some unique properties, which makes it a promising tool to study the function of the L-type Ca2+ channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a missing link between tree physiological and wood-anatomical knowledge which makes it impossible mechanistically to explain and predict the radial growth of individual trees from climate data. Empirical data of microclimatic factors, intra-annual growth rates, and tree-specific ratios between actual and potential transpiration (T PET−1) of trees of three species (Quercus pubescens, Pinus sylvestris, and Picea abies) at two dry sites in the central Wallis, Switzerland, were recorded from 2002 to 2004 at a 10 min resolution. This included the exceptionally hot and dry summer of 2003. These data were analysed in terms of direct (current conditions) and indirect impacts (predispositions of the past year) on growth. Rain was found to be the only factor which, to a large extent, consistently explained the radial increment for all three tree species at both sites and in the short term as well. Other factors had some explanatory power on the seasonal time-scale only. Quercus pubescens built up much of its tree ring before bud break. Pinus sylvestris and Picea abies started radial growth 1–2 weeks after Quercus pubescens and this was despite the fact that they had a high T PET−1 before budburst and radial growth started. A high T PET−1 was assumed to be related to open stomata, a very high net CO2 assimilation rate, and thus a potential carbon (C)-income for the tree. The main period of radial growth covered about 30–70% of the productive days of a year. In terms of C-allocation, these results mean that Quercus pubescens depended entirely on internal C-stores in the early phase of radial growth and that for all three species there was a long time period of C-assimilation which was not used for radial growth in above-ground wood. The results further suggest a strong dependence of radial growth on the current tree water relations and only secondarily on the C-balance. A concept is discussed which links radial growth over a feedback loop to actual tree water-relations and long-term affected C-storage to microclimate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prosody or speech melody subserves linguistic (e.g., question intonation) and emotional functions in speech communication. Findings from lesion studies and imaging experiments suggest that, depending on function or acoustic stimulus structure, prosodic speech components are differentially processed in the right and left hemispheres. This direct current (DC) potential study investigated the linguistic processing of digitally manipulated pitch contours of sentences that carried an emotional or neutral intonation. Discrimination of linguistic prosody was better for neutral stimuli as compared to happily as well as fearfully spoken sentences. Brain activation was increased during the processing of happy sentences as compared to neutral utterances. Neither neutral nor emotional stimuli evoked lateralized processing in the left or right hemisphere, indicating bilateral mechanisms of linguistic processing for pitch direction. Acoustic stimulus analysis suggested that prosodic components related to emotional intonation, such as pitch variability, interfered with linguistic processing of pitch course direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polylactide (PLA) is a biodegradable polymer that has been used in particle form for drug release, due to its biocompatibility, tailorable degradation kinetics, and desirable mechanical properties. Active pharmaceutical ingredients (APIs) may be either dissolved or encapsulated within these biomaterials to create micro- or nanoparticles. Delivery of an AIP within fine particles may overcome solubility or stability issues that can result in early elimination or degradation of the AIP in a hostile biological environment. Furthermore, it is a promising method for controlling the rate of drug delivery and dosage. The goal of this project is to develop a simple and cost-effective device that allows us to produce monodisperse micro- and nanocapsules with controllable size and adjustable sheath thickness on demand. To achieve this goal, we have studied the dual-capillary electrospray and pulsed electrospray. Dual-capillary electrospray has received considerable attention in recent years due to its ability to create core-shell structures in a single-step. However, it also increases the difficulty of controlling the inner and outer particle morphology, since two simultaneous flows are required. Conventional electrospraying has been mainly conducted using direct-current (DC) voltage with little control over anything but the electrical potential. In contrast, control over the input voltage waveform (i.e. pulsing) in electrospraying offers greater control over the process variables. Poly(L-lactic acid) (PLLA) microspheres and microcapsules were successfully fabricated via pulsed-DC electrospray and dual-capillary electrospray, respectively. Core shell combinations produced include: Water/PLLA, PLLA/polyethylene glycol (PEG), and oleic Acid/PLLA. In this study, we designed a novel high-voltage pulse forming network and a set of new designs for coaxial electrospray nozzles. We also investigated the effect of the pulsed voltage characteristics (e.g. pulse frequency, pulse amplitude and pulse width) on the particle’s size and uniformity. We found that pulse frequency, pulse amplitude, pulse width, and the combinations of these factors had a statistically significant effect on the particle’s size. In addition, factors such as polymer concentration, solvent type, feed flow rate, collection method, temperature, and humidity can significantly affect the size and shape of the particles formed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a popular concept in clinical neurology that muscles of the lower face receive predominantly crossed cortico-bulbar motor input, whereas muscles of the upper face receive additional ipsilateral, uncrossed input. To test this notion, we used focal transcranial magnetic brain stimulation to quantify crossed and uncrossed cortico-muscular projections to 6 different facial muscles (right and left Mm. frontalis, nasalis, and orbicularis oris) in 36 healthy right-handed volunteers (15 men, 21 women, mean age 25 years). Uncrossed input was present in 78% to 92% of the 6 examined muscles. The mean uncrossed: crossed response amplitude ratios were 0.74/0.65 in right/left frontalis, 0.73/0.59 in nasalis, and 0.54/0.71 in orbicularis oris; ANOVA p>0.05). Judged by the sizes of motor evoked potentials, the cortical representation of the 3 muscles was similar. The amount of uncrossed projections was different between men and women, since men had stronger left-to-left projections and women stronger right-to-right projections. We conclude that the amount of uncrossed pyramidal projections is not different for muscles of the upper from those of the lower face. The clinical observation that frontal muscles are often spared in central facial palsies must, therefore, be explained differently. Moreover, gender specific lateralization phenomena may not only be present for higher level behavioural functions, but may also affect simple systems on a lower level of motor hierarchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Motor evoked potentials (MEPs) after transcranial magnetic brain stimulation (TMS) are smaller than CMAPs after peripheral nerve stimulation, because desynchronization of the TMS-induced motor neurone discharges occurs (i.e. MEP desynchronization). This desynchronization effect can be eliminated by use of the triple stimulation technique (TST; Brain 121 (1998) 437). The objective of this paper is to study the effect of discharge desynchronization on MEPs by comparing the size of MEP and TST responses. METHODS: MEP and TST responses were obtained in 10 healthy subjects during isometric contractions of the abductor digiti minimi, during voluntary background contractions between 0% and 20% of maximal force, and using 3 different stimulus intensities. Additional data from other normals and from multiple sclerosis (MS) patients were obtained from previous studies. RESULTS: MEPs were smaller than TST responses in all subjects and under all stimulating conditions, confirming the marked influence of desynchronization on MEPs. There was a linear relation between the amplitudes of MEPs vs. TST responses, independent of the degree of voluntary contraction and stimulus intensity. The slope of the regression equation was 0.66 on average, indicating that desynchronization reduced the MEP amplitude on average by one third, with marked inter-individual variations. A similar average proportion was found in MS patients. CONCLUSIONS: The MEP size reduction induced by desynchronization is not influenced by the intensity of TMS and by the level of facilitatory voluntary background contractions. It is similar in healthy subjects and in MS patients, in whom increased desynchronization of central conduction was previously suggested to occur. Thus, the MEP size reduction observed may not parallel the actual amount of desynchronization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was undertaken to test whether recovery cycle measurements can provide useful information about the membrane potential of human muscle fibers. Multifiber responses to direct muscle stimulation through needle electrodes were recorded from the brachioradialis of healthy volunteers, and the latency changes measured as conditioning stimuli were applied at interstimulus intervals of 2-1000 ms. In all subjects, the relative refractory period (RRP), which lasted 3.27 +/- 0.45 ms (mean +/- SD, n = 12), was followed by a phase of supernormality, in which the velocity increased by 9.3 +/- 3.4% at 6.1 +/- 1.3 ms, and recovered over 1 s. A broad hump of additional supernormality was seen at around 100 ms. Extra conditioning stimuli had little effect on the early supernormality but increased the later component. The two phases of supernormality resembled early and late afterpotentials, attributable respectively to the passive decay of membrane charge and potassium accumulation in the t-tubules. Five minutes of ischemia progressively prolonged the RRP and reduced supernormality, confirming that these parameters are sensitive to membrane depolarization. Velocity recovery cycles may provide useful information about altered muscle membrane potential and t-tubule function in muscle disease. Muscle Nerve, 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Osteoarthritis is the most common form of joint disease and the leading cause of pain and physical disability in the elderly. Transcutaneous electrical nerve stimulation (TENS), interferential current stimulation and pulsed electrostimulation are used widely to control both acute and chronic pain arising from several conditions, but some policy makers regard efficacy evidence as insufficient. OBJECTIVES: To compare transcutaneous electrostimulation with sham or no specific intervention in terms of effects on pain and withdrawals due to adverse events in patients with knee osteoarthritis. SEARCH STRATEGY: We updated the search in CENTRAL, MEDLINE, EMBASE, CINAHL and PEDro up to 5 August 2008, checked conference proceedings and reference lists, and contacted authors. SELECTION CRITERIA: Randomised or quasi-randomised controlled trials that compared transcutaneously applied electrostimulation with a sham intervention or no intervention in patients with osteoarthritis of the knee. DATA COLLECTION AND ANALYSIS: We extracted data using standardised forms and contacted investigators to obtain missing outcome information. Main outcomes were pain and withdrawals or dropouts due to adverse events. We calculated standardised mean differences (SMDs) for pain and relative risks for safety outcomes and used inverse-variance random-effects meta-analysis. The analysis of pain was based on predicted estimates from meta-regression using the standard error as explanatory variable. MAIN RESULTS: In this update we identified 14 additional trials resulting in the inclusion of 18 small trials in 813 patients. Eleven trials used TENS, four interferential current stimulation, one both TENS and interferential current stimulation, and two pulsed electrostimulation. The methodological quality and the quality of reporting was poor and a high degree of heterogeneity among the trials (I(2) = 80%) was revealed. The funnel plot for pain was asymmetrical (P < 0.001). The predicted SMD of pain intensity in trials as large as the largest trial was -0.07 (95% CI -0.46 to 0.32), corresponding to a difference in pain scores between electrostimulation and control of 0.2 cm on a 10 cm visual analogue scale. There was little evidence that SMDs differed on the type of electrostimulation (P = 0.94). The relative risk of being withdrawn or dropping out due to adverse events was 0.97 (95% CI 0.2 to 6.0). AUTHORS' CONCLUSIONS: In this update, we could not confirm that transcutaneous electrostimulation is effective for pain relief. The current systematic review is inconclusive, hampered by the inclusion of only small trials of questionable quality. Appropriately designed trials of adequate power are warranted.