911 resultados para Traffic Breakdown
Resumo:
In transport networks, Origin-Destination matrices (ODM) are classically estimated from road traffic counts whereas recent technologies grant also access to sample car trajectories. One example is the deployment in cities of Bluetooth scanners that measure the trajectories of Bluetooth equipped cars. Exploiting such sample trajectory information, the classical ODM estimation problem is here extended into a link-dependent ODM (LODM) one. This much larger size estimation problem is formulated here in a variational form as an inverse problem. We develop a convex optimization resolution algorithm that incorporates network constraints. We study the result of the proposed algorithm on simulated network traffic.
Resumo:
The development of methods for real-time crash prediction as a function of current or recent traffic and roadway conditions is gaining increasing attention in the literature. Numerous studies have modeled the relationships between traffic characteristics and crash occurrence, and significant progress has been made. Given the accumulated evidence on this topic and the lack of an articulate summary of research status, challenges, and opportunities, there is an urgent need to scientifically review these studies and to synthesize the existing state-of-the-art knowledge. This paper addresses this need by undertaking a systematic literature review to identify current knowledge, challenges, and opportunities, and then conducts a meta-analysis of existing studies to provide a summary impact of traffic characteristics on crash occurrence. Sensitivity analyses were conducted to assess quality, publication bias, and outlier bias of the various studies; and the time intervals used to measure traffic characteristics were also considered. As a result of this comprehensive and systematic review, issues in study designs, traffic and crash data, and model development and validation are discussed. Outcomes of this study are intended to provide researchers focused on real-time crash prediction with greater insight into the modeling of this important but extremely challenging safety issue.
Resumo:
In response to the Travelsafe Committee Report No. 51 – report on the inquiry into Automatic Plate Recognition Technology – it was recommended that the Queensland Police Service continue to trial the deployment of ANPR technology for traffic enforcement work and to evaluate the road safety impacts and operational effectiveness of the technology. As such, the purpose of this report is to provide an independent evaluation of a trial of ANPR that was conducted by a project team within the State Traffic Support Branch of the Queensland Police Service (QPS) and provide recommendations as to the applicability and usability of the technology for use throughout Queensland...
Resumo:
Injury as a result of road traffic crashes is one of the most significant public health problems in developing countries. It intersects with disability as a development issue because a substantial proportion of people injured in road traffic crashes experience disability, both short term and long term. While there have been significant steps towards better management of road safety globally, especially in developing countries, the implications for road safety policy and practice of disability due road traffic crashes is not fully appreciated. In particular, qualitative information on the lived experience people with a long term disability as a result of a road traffic crash can inform better road safety policy and practice, as demonstrated in a case study from Thailand. The benefits of better policies and practices are likely to accrue to a wide range of road users, and to contribute to the achievement of sustainable development.
Resumo:
This study examines the context of coordinated responses, triggers for coordinated responses, and preference for or choice of coordinating strategies in road traffic injury prevention at a local level in some OECD countries. This aim is achieved through a mixed-methodology. In this respect, 22 semi-structured interviews were conducted with road traffic injury prevention experts from five OECD countries. In addition, 31 professional road traffic injury prevention stakeholders from seven OECD nations completed a self-administered, online survey. It found that there was resource limitation and inter-dependence across actors within the context of road traffic injury prevention at a local level. Furthermore, this study unveiled the realization of resource-dependency as a trigger for coordinated responses at a local level. Moreover, the present examination has revealed two coordinating strategies favored by experts in road traffic injury prevention – i.e. self-organizing community groups, which are deemed to have a platform to deliver programs within communities, and the funding of community groups to forge partnerships. However, the present study did not appear to endorse other strategies such as the formalization of coordinated responses or a legal mandate to coordinate responses. In essence, this study appears to suggest a need to manage coordinated responses from an adaptive perspective with interactions across road traffic injury prevention programs being forged on a mutual understanding of inter-dependency arising out of resource scarcity. In fact, the role of legislation and top-down national models in local level management of coordinated responses is likely to be one of identifying opportunities to interact with self-organized community groups and fund partnership-based road traffic injury prevention events.
Resumo:
Despite the extent of works done on modelling port water collisions, not much research effort has been devoted to modelling collisions at port anchorages. This paper aims to fill this important gap in literature by applying the Navigation Traffic Conflict Technique (NTCT) for measuring the collision potentials in anchorages and for examining the factors contributing to collisions. Grounding on the principles of the NTCT, a collision potential measurement model and a collision potential prediction model were developed. These models were illustrated by using vessel movement data of the anchorages in Singapore port waters. Results showed that the measured collision potentials are in close agreement with those perceived by harbour pilots. Higher collision potentials were found in anchorages attached to shoreline and international fairways, but not at those attached to confined water. Higher operating speeds, larger numbers of isolated danger marks and day conditions were associated with reduction in the collision potentials.
Resumo:
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.
Resumo:
Origin-Destination matrices (ODM) estimation can benefits of the availability of sample trajectories which can be measured thanks to recent technologies. This paper focus on the case of transport networks where traffic counts are measured by magnetic loops and sample trajectories available. An example of such network is the city of Brisbane, where Bluetooth detectors are now operating. This additional data source is used to extend the classical ODM estimation to a link-specific ODM (LODM) one using a convex optimisation resolution that incorporates networks constraints as well. The proposed algorithm is assessed on a simulated network.
Resumo:
This paper proposes an analytical Incident Traffic Management framework for freeway incident modeling and traffic re-routing. The proposed framework incorporates an econometric incident duration model and a traffic re-routing optimization module. The incident duration model is used to estimate the expected duration of the incident and thus determine the planning horizon for the re-routing module. The re-routing module is a CTM-based Single Destination System Optimal Dynamic Traffic Assignment model that generates optimal real-time strategies of re-routing freeway traffic to its adjacent arterial network during incidents. The proposed framework has been applied to a case study network including a freeway and its adjacent arterial network in South East Queensland, Australia. The results from different scenarios of freeway demand and incident blockage extent have been analyzed and advantages of the proposed framework are demonstrated.
Resumo:
BACKGROUND The workgroup of Traffic Psychology is concerned with the social, behavioral, and perceptual aspects that are associated with use and non-use of bicycle helmets, in their various forms and under various cycling conditions. OBJECTIVES The objectives of WG2 are to (1) share current knowledge among the people already working in the field, (2) suggest new ideas for research on and evaluation of the design of bicycle helmets, and (3) discuss options for funding of such research within the individual frameworks of the participants. Areas for research include 3.1. The patterns of use of helmets among different users: children, adults, and sports enthusiasts. 3.2. The use of helmets in different environments: rural roads, urban streets, and bike trails. 3.3. Concerns bicyclists have relative to their safety and convenience and the perceived impact of using helmets on comfort and convenience. 3.4. The benefit of helmets for enhancing visibility, and how variations in helmet design and colors affect daytime, nighttime, and dusktime visibility. 3.5. The role of helmets in the acceptance of city-wide pickup-and-drop-off bicycles. 3.6. The impact of helmets on visual search behaviour of bicyclists.
Resumo:
In an effort to understand the fundamental aspects of air quality in traffic tunnel environments, field campaigns were conducted to measure polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and other important pollutants within two traffic tunnels in Nam San (NS) and Hong Ji (HJ) in Korea in 2009 and 2010. The mean concentrations of ∑PCDD/Fs (in fg/m(3)) at the two tunnel sites were 1270 (± 880) and 1200 (± 810), respectively. These values were moderately lower than those measured at a non-tunnel urban background site (1350 (± 780) fg/m(3))--selected as a reference in this study. In addition, seasonal patterns of dioxin concentrations were clearly evident at the traffic tunnels like the urban reference site, showing higher levels during the winter (and spring) than the summer (and fall). The observed seasonal variations were driven by changes in the concentrations of ∑PCDF congeners, while ∑PCDD concentrations showed little seasonality. The results of our study suggest that there is no significant difference in source characteristics between the two investigated tunnel sites and urban location, although the role of gasoline and diesel fueled vehicles are considered as the major source in determining the PCDDs and PCDF levels in a tunnel environment. However, given the relative increase in other important ambient pollutant (e.g. PM10) concentrations over ∑PCDD/Fs in tunnel air (compared to urban background air), the balance of sources in tunnels is clearly different from those in urban air overall.
Resumo:
This paper investigates the platoon dispersion model that is part of the 2010 Highway Capacity Manual that is used for forecasting downstream traffic flows for analyzing both signalized and TWSC intersections. The paper focuses on the effect of platoon dispersion on the proportion of time blocked, the conflicting flow rate, and the capacity flow rate for the major street left turn movement at a TWSC intersection. The existing HCM 2010 methodology shows little effect on conflicting flow or capacity for various distances downstream from the signalized intersection. Two methods are suggested for computing the conflicting flow and capacity of minor stream movements at the TWSC intersection that have more desirable properties than the existing HCM method. Further, if the existing HCM method is retained, the results suggest that the upstream signals model be dropped from the HCM method for TWSC intersections.
Resumo:
An intrinsic challenge associated with evaluating proposed techniques for detecting Distributed Denial-of-Service (DDoS) attacks and distinguishing them from Flash Events (FEs) is the extreme scarcity of publicly available real-word traffic traces. Those available are either heavily anonymised or too old to accurately reflect the current trends in DDoS attacks and FEs. This paper proposes a traffic generation and testbed framework for synthetically generating different types of realistic DDoS attacks, FEs and other benign traffic traces, and monitoring their effects on the target. Using only modest hardware resources, the proposed framework, consisting of a customised software traffic generator, ‘Botloader’, is capable of generating a configurable mix of two-way traffic, for emulating either large-scale DDoS attacks, FEs or benign traffic traces that are experimentally reproducible. Botloader uses IP-aliasing, a well-known technique available on most computing platforms, to create thousands of interactive UDP/TCP endpoints on a single computer, each bound to a unique IP-address, to emulate large numbers of simultaneous attackers or benign clients.
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.