864 resultados para Tracking radar
Resumo:
This paper examines a dataset that derives from an observational tracking, in order to analyze where and how middle-class working families spend time at home. We use an ethnographic approach to study the everyday lives of Italian dual-income middle-class families, with the aim to analyze quantitatively the use of home spaces and the types of activities of family members on weekday afternoons and evenings. The different analyses (multiple correspondence analysis, agglomerative hierarchical cluster, discriminant analysis) show how particular spaces and activities in these spaces are dominated by certain family members. We suggest a combination of qualitative and quantitative methodologies as useful tools to explore in detail the everyday lives of families, and to understand how family members use the domestic spaces. In particular, we consider relevant the use of quantitative analyses to examine ethnographic data, especially in connection with the methodological reflexivity among researchers
Resumo:
Introduction: Neuronal oscillations have been the focus of increasing interest in the neuroscientific community, in part because they have been considered as a possible integrating mechanism through which internal states can influence stimulus processing in a top-down way (Engel et al., 2001). Moreover, increasing evidence indicates that oscillations in different frequency bands interact with one other through coupling mechanisms (Jensen and Colgin, 2007). The existence and the importance of these cross-frequency couplings during various tasks have been verified by recent studies (Canolty et al., 2006; Lakatos et al., 2007). In this study, we measure the strength and directionality of two types of couplings - phase-amplitude couplings and phase-phase couplings - between various bands in EEG data recorded during an illusory contour experiment that were identified using a recently-proposed adaptive frequency tracking algorithm (Van Zaen et al., 2010). Methods: The data used in this study have been taken from a previously published study examining the spatiotemporal mechanisms of illusory contour processing (Murray et al., 2002). The EEG in the present study were from a subset of nine subjects. Each stimulus was composed of 'pac-man' inducers presented in two orientations: IC, when an illusory contour was present, and NC, when no contour could be detected. The signals recorded by the electrodes P2, P4, P6, PO4 and PO6 were averaged, and filtered into the following bands: 4-8Hz, 8-12Hz, 15-25Hz, 35-45Hz, 45-55Hz, 55-65Hz and 65-75Hz. An adaptive frequency tracking algorithm (Van Zaen et al., 2010) was then applied in each band in order to extract the main oscillation and estimate its frequency. This additional step ensures that clean phase information is obtained when taking the Hilbert transform. The frequency estimated by the tracker was averaged over sliding windows and then used to compare the two conditions. Two types of cross-frequency couplings were considered: phase-amplitude couplings and phase-phase couplings. Both types were measured with the phase locking value (PLV, Lachaux et al., 1999) over sliding windows. The phase-amplitude couplings were computed with the phase of the low frequency oscillation and the phase of the amplitude of the high frequency one. Different coupling coefficients were used when measuring phase-phase couplings in order to estimate different m:n synchronizations (4:3, 3:2, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 and 9:1) and to take into account the frequency differences across bands. Moreover, the direction of coupling was estimated with a directionality index (Bahraminasab et al., 2008). Finally, the two conditions IC and NC were compared with ANOVAs with 'subject' as a random effect and 'condition' as a fixed effect. Before computing the statistical tests, the PLV values were transformed into approximately normal variables (Penny et al., 2008). Results: When comparing the mean estimated frequency across conditions, a significant difference was found only in the 4-8Hz band, such that the frequency within this band was significantly higher for IC than NC stimuli starting at ~250ms post-stimulus onset (Fig. 1; solid line shows IC and dashed line NC). Significant differences in phase-amplitude couplings were obtained only when the 4-8 Hz band was taken as the low frequency band. Moreover, in all significant situations, the coupling strength is higher for the NC than IC condition. An example of significant difference between conditions is shown in Fig. 2 for the phase-amplitude coupling between the 4-8Hz and 55-65Hz bands (p-value in top panel and mean PLV values in the bottom panel). A decrease in coupling strength was observed shortly after stimulus onset for both conditions and was greater for the condition IC. This phenomenon was observed with all other frequency bands. The results obtained for the phase-phase couplings were more complex. As for the phase-amplitude couplings, all significant differences were obtained when the 4-8Hz band was considered as the low frequency band. The stimulus condition exhibiting the higher coupling strength depended on the ratio of the coupling coefficients. When this ratio was small, the IC condition exhibited the higher phase-phase coupling strength. When this ratio was large, the NC condition exhibited the higher coupling strength. Fig. 3 shows the phase-phase couplings between the 4-8Hz and 35-45Hz bands for the coupling coefficient 6:1, and the coupling strength was significantly higher for the IC than NC condition. By contrast, for the coupling coefficient 9:1 the NC condition gave the higher coupling strength (Fig. 4). Control analyses verified that it is not a consequence of the frequency difference between the two conditions in the 4-8Hz band. The directionality measures indicated a transfer of information from the low frequency components towards the high frequency ones. Conclusions: Adaptive tracking is a feasible method for EEG analyses, revealing information both about stimulus-related differences and coupling patterns across frequencies. Theta oscillations play a central role in illusory shape processing and more generally in visual processing. The presence vs. absence of illusory shapes was paralleled by faster theta oscillations. Phase-amplitude couplings were decreased more for IC than NC and might be due to a resetting mechanism. The complex patterns in phase-phase coupling between theta and beta/gamma suggest that the contribution of these oscillations to visual binding and stimulus processing are not as straightforward as conventionally held. Causality analyses further suggest that theta oscillations drive beta/gamma oscillations (see also Schroeder and Lakatos, 2009). The present findings highlight the need for applying more sophisticated signal analyses in order to establish a fuller understanding of the functional role of neural oscillations.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR traveltime data can allow for a significant reduction in uncertainty regarding subsurface van Genuchten-Mualem (VGM) parameters. Much of the previous work on the stochastic estimation of VGM parameters from crosshole GPR data has considered the case of steady-state infiltration conditions, which represent only a small fraction of practically relevant scenarios. We explored in detail the dynamic infiltration case, specifically examining to what extent time-lapse crosshole GPR traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify VGM parameters and their uncertainties in a layered medium, as well as the corresponding soil hydraulic properties. We used a Bayesian Markov-chain-Monte-Carlo inversion approach. We first explored the advantages and limitations of this approach with regard to a realistic synthetic example before applying it to field measurements. In our analysis, we also considered different degrees of prior information. Our findings indicate that the stochastic inversion of the time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.
Resumo:
According to molecular epidemiology theory, two isolates belong to the same chain of transmission if they are similar according to a highly discriminatory molecular typing method. This has been demonstrated in outbreaks, but is rarely studied in endemic situations. Person-to-person transmission cannot be established when isolates of meticillin-resistant Staphylococcus aureus (MRSA) belong to endemically predominant genotypes. By contrast, isolates of infrequent genotypes might be more suitable for epidemiological tracking. The objective of the present study was to determine, in newly identified patients harbouring non-predominant MRSA genotypes, whether putative epidemiological links inferred from molecular typing could replace classical epidemiology in the context of a regional surveillance programme. MRSA genotypes were defined using double-locus sequence typing (DLST) combining clfB and spa genes. A total of 1,268 non-repetitive MRSA isolates recovered between 2005 and 2006 in Western Switzerland were typed: 897 isolates (71%) belonged to four predominant genotypes, 231 (18%) to 55 non-predominant genotypes, and 140 (11%) were unique. Obvious epidemiological links were found in only 106/231 (46%) patients carrying isolates with non-predominant genotypes suggesting that molecular surveillance identified twice as many clusters as those that may have been suspected with classical epidemiological links. However, not all of these molecular clusters represented person-to-person transmission. Thus, molecular typing cannot replace classical epidemiology but is complementary. A prospective surveillance of MRSA genotypes could help to target epidemiological tracking in order to recognise new risk factors in hospital and community settings, or emergence of new epidemic clones.
Resumo:
PURPOSE: To implement real-time myocardial strain-encoding (SENC) imaging in combination with tracking the tissue displacement in the through-plane direction. MATERIALS AND METHODS: SENC imaging was combined with the slice-following technique by implementing three-dimensional (3D) selective excitation. Certain adjustments were implemented to reduce scan time to one heartbeat. A total of 10 volunteers and five pigs were scanned on a 3T MRI scanner. Spatial modulation of magnetization (SPAMM)-tagged images were acquired on planes orthogonal to the SENC planes for comparison. Myocardial infarction (MI) was induced in two pigs and the resulting SENC images were compared to standard delayed-enhancement (DE) images. RESULTS: The strain values computed from SENC imaging with slice-following showed significant difference from those acquired without slice-following, especially during systole (P < 0.01). The strain curves computed from the SENC images with and without slice-following were similar to those computed from the orthogonal SPAMM images, with and without, respectively, tracking the tag line displacement in the strain direction. The resulting SENC images showed good agreement with the DE images in identifying MI in infarcted pigs. CONCLUSION: Correction of through-plane motion in real-time cardiac functional imaging is feasible using slice-following. The strain measurements are more accurate than conventional SENC measurements in humans and animals, as validated with conventional MRI tagging.
Resumo:
Magnetic resonance angiography (MRA) provides a noninvasive means to detect the presence, location and severity of atherosclerosis throughout the vascular system. In such studies, and especially those in the coronary arteries, the vessel luminal area is typically measured at multiple cross-sectional locations along the course of the artery. The advent of fast volumetric imaging techniques covering proximal to mid segments of coronary arteries necessitates automatic analysis tools requiring minimal manual interactions to robustly measure cross-sectional area along the three-dimensional track of the arteries in under-sampled and non-isotropic datasets. In this work, we present a modular approach based on level set methods to track the vessel centerline, segment the vessel boundaries, and measure transversal area using two user-selected endpoints in each coronary of interest. Arterial area and vessel length are measured using our method and compared to the standard Soap-Bubble reformatting and analysis tool in in-vivo non-contrast enhanced coronary MRA images.
Resumo:
A recently developed technique, polarimetric radar interferometry, is applied to tackle the problem of the detection of buried objects embedded in surface clutter. An experiment with a fully polarimetric radar in an anechoic chamber has been carried out using different frequency bands and baselines. The processed results show the ability of this technique to detect buried plastic mines and to measure their depth. This technique enables the detection of plastic mines even if their backscatter response is much lower than that of the surface clutter.
Resumo:
Usingof belt for high precision applications has become appropriate because of the rapid development in motor and drive technology as well as the implementation of timing belts in servo systems. Belt drive systems provide highspeed and acceleration, accurate and repeatable motion with high efficiency, long stroke lengths and low cost. Modeling of a linear belt-drive system and designing its position control are examined in this work. Friction phenomena and position dependent elasticity of the belt are analyzed. Computer simulated results show that the developed model is adequate. The PID control for accurate tracking control and accurate position control is designed and applied to the real test setup. Both the simulation and the experimental results demonstrate that the designed controller meets the specified performance specifications.
Resumo:
Three molecular typing methods (pulsed-field electrophoresis, localization of the mecA gene, and probing the vicinity of mec) have been used for the characterization of 40 catheter-related isolates of coagulase-negative staphylococci (CNS) in 14 patients admitted to the same hospital. The 40 isolates yielded 14 different SmaI banding patterns and corresponding unique localizations of mecA, each associated with a unique ClaI mecA polymorph. In 6 of the 14 patients the contaminated skin at the catheter entry site was the source of 4 local infections and 2 cases of bacteremia. A contaminated hub was the origin of 2 local infections and 4 cases of bacteremia in 6 more patients. The remaining 2 patients had positive cultures from both skin and catheter hub. In each bacteremic patient, the CNS recovered from catheter-related sites (tip, skin, and/or hub) and the CNS recovered from blood were identical, but each of these matching isolates was unique to the particular patient, indicating a low rate of cross-infection from patient to patient. Although classical methods for typing CNS (e.g., biotype and antibiotype) are readily available for most hospital laboratories, they have limitations concerning reproducibility and discriminatory power. Molecular epidemiologic techniques can provide powerful support to traditional techniques in determining the etiologic role of CNS in the disease process
Resumo:
Evaluar una arquitectura de la información en un sitio web ya desplegado no resulta una tarea sencilla. La mayoría de las técnicas se centran en examinar la usabilidad del sistema que, aunque afecta a la arquitectura de la información, no es el único factor que influye en ella. La principal técnica que se utiliza es el test de estrés de navegación. Se muestra un aporte metodológico para hacer dicha técnica más informativa, llevándola más allá de la simple anotación en papel por parte del usuario de respuestas a las preguntas de navegación planteadas. Se propone la combinación de ésta con otras técnicas de evaluación de la usabilidad: la técnica de pensar en voz alta o thinking aloud y un cuestionario de usabilidad. Se ha utilizado un sistema de seguimiento de la mirada o eye tracking para complementar la información obtenida mediante las técnicas aplicadas. El enfoque metodológico planteado se ha puesto a prueba analizando una serie de sitios web de bibliotecas de universidades públicas españolas. Se muestra en los resultados la validez del enfoque empleado, así como el valor que dicho enfoque y el uso del eye tracking aportan al análisis de la arquitectura de la información respecto al test de estrés de navegación tradicional.
Resumo:
El presente estudio se enmarca en el proyecto europeo SIBERIA. Trata de explorar el uso de imágenes radar de satélite (ERS y JERS) para la actualización de la cartografía de vegetación de zonas boreales. Se dispone de 8 imágenes de amplitud y coherencia tomadas en 1998, así como de un inventario de vegetación georreferenciado de dos pequeñas zonas. Se proponen tres tipos de clasificaciones supervisadas por el método de máxima verosimilitud. La primera con las imágenes de satélite, la segunda añadiendo algunas imágenes texturales, y la tercera utilizando sólo las imágenes de los componentes principales más significativos. Se siguen los criterios establecidos en el proyecto SIBERIA para la obtención de áreas de entrenamiento. Se propone una doble validación, por una parte vía matrices de confusión a partir de áreas de verdad-terreno obtenidas por el mismo método que las áreas de entrenamiento, y por otra parte contrastando y correlacionando las clasificaciones con los parámetros de inventario disponibles para dos pequeñas áreas de verdad-terreno. Los resultados indican una sensible mejora en la clasificación con la incorporación de imágenes texturales (la precisión aumenta de un 66% a un 75%), y señalan el parámetro biomasa como el mejor correlacionado con las clasificaciones derivadas (coeficiente de correlación r de hasta 0,49). Diferentes fuentes de error permiten augurar un margen de mejora para posteriores estudios.
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.