822 resultados para Trânsito gastrointestinal
Resumo:
Spores from a number of different Bacillus species are currently being used as human and animal probiotics, although their mechanisms of action remain poorly understood. Here we describe the isolation of 237 presumptive gut-associated Bacillus spp. isolates that were obtained by heat and ethanol treatment of fecal material from organically reared broilers followed by aerobic plating. Thirty-one representative isolates were characterized according to their morphological, physiological, and biochemical properties as well as partial 16S rRNA gene sequences and screening for the presence of plasmid DNA. The Bacillus species identified included B. subtilis, B. pumilus, B. licheniformis, B. clausii, B. megaterium, B. firmus, and species of the B. cereus group, whereas a number of our isolates could not be classified. Intrinsic properties of potential importance for survival in the gut that could be advantageous for spore-forming probiotics were further investigated for seven isolates belonging to five different species. All isolates sporulated efficiently in the laboratory, and the resulting spores were tolerant to simulated gastrointestinal tract conditions. They also exhibited antimicrobial activity against a broad spectrum of bacteria, including food spoilage and pathogenic organisms such as Bacillus spp., Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. Importantly, the isolates were susceptible to most of the antibiotics tested, arguing that they would not act as donors for resistance determinants if introduced in the form of probiotic preparations. Together, our results suggest that some of the sporeformers isolated in this study have the potential to persist in or transiently associate with the complex gut ecosystem.
Resumo:
Shiga toxin (Stx)-positive Escherichia coli O157:117 readily colonize and persist in specific-pathogen-free (SPF) chicks, and we have shown that an Stx-negative E. coli O157:117 isolate (NCTC12900) readily colonizes SPF chicks for up to 169 days after oral inoculation at 1 day of age. However, the role of intimin in the persistent colonization of poultry remains unclear. Thus, to investigate the role of intimin and flagella, which is a known factor in the persistence of non-O157 E. coli in poultry, isogenic single- and double-intimin and aflagellar mutants were constructed in E. coli O157:117 isolate NCTC12900. These mutants were used to inoculate (10(5) CFU) 1-day-old SPF chicks. In general, significant attenuation of the aflagellate and intiminaflagellate mutants, but not the intimin mutant, was noted at similar time points between 22 and 92 days after inoculation. The intimin-deficient mutant was still being shed at the end of the experiment, which was 211 days after inoculation, 84 days more than the wild type. Shedding of the aflagellar and intimin-aflagellar mutants ceased 99 and 113 days after inoculation, respectively. Histological analysis of gastrointestinal tissues from inoculated birds gave no evidence for true microcolony formation by NCTC12900 or intimin and aflagellar mutants to epithelial cells. However, NCTC12900 mutant derivatives associated with the mucosa were observed as individual cells and/or as large aggregates. Association with luminal contents was also noted. These data suggest that O157 organisms do not require intimin for the persistent colonization of chickens, whereas flagella do play a role in this process.
Resumo:
Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0-50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer.
Resumo:
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR.RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.
Resumo:
An in vitro colon extended physiologically based extraction test (CEPBET) which incorporates human gastrointestinal tract (GIT) parameters (including pH and chemistry, solid-to-fluid ratio, mixing and emptying rates) was applied for the first time to study the bioaccessibility of brominated flame retardants (BFRs) from the 3 main GIT compartments (stomach, small intestine and colon) following ingestion of indoor dust. Results revealed the bioaccessibility of γ-HBCD (72%) was less than that for α- and β-isomers (92% and 80% respectively) which may be attributed to the lower aqueous solubility of the γ-isomer (2 μg L−1) compared to the α- and β-isomers (45 and 15 μg L−1 respectively). No significant change in the enantiomeric fractions of HBCDs was observed in any of the studied samples. However, this does not completely exclude the possibility of in vivo enantioselective absorption of HBCDs, as the GIT cell lining and bacterial flora – which may act enantioselectively – are not included in the current CE-PBET model. While TBBP-A was almost completely (94%) bioaccessible, BDE-209 was the least (14%) bioaccessible of the studied BFRs. Bioaccessibility of tri-hepta BDEs ranged from 32–58%. No decrease in the bioaccessibility with increasing level of bromination was observed in the studied PBDEs.
An in vitro assessment of the fate of Maillard reaction products in the human gastrointestinal tract
Resumo:
Serine proteases from the circulation, inflammatory cells, digestive glands and microorganisms can signal to cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors. Proteases cleave PARs at specific sites to expose tethered ligand domains that bind to and activate the cleaved receptors. Despite this irreversible mechanism of activation, PAR signaling is tightly regulated to prevent the uncontrolled stimulation of cells. Although PARs are found in all organ systems, protease signaling is of particular interest in the gastrointestinal tract, where proteases regulate neurotransmission, secretion, motility, epithelial permeability and intestinal inflammation, and can thus contribute to disease.
Resumo:
Infection with Eimeria spp. (coccidia) can be devastating in goats, particularly for young, recently-weaned kids, resulting in diarrhea, dehydration, and even death. Feeding dried sericea lespedeza [SL; Lespedeza cuneata (Dum.-Cours.) G. Don.] to young goats has been reported to reduce the effects of internal parasites, including gastrointestinal nematodes (GIN) but there have been no reports of the effects of feeding this forage on Eimeria spp. in goats. Two confinement feeding experiments were completed on recently-weaned intact bucks (24 Kiko-cross, Exp. 1; 20 Spanish, Exp. 2) to determine effects of SL pellets on an established infection of GIN and coccidia. The bucks were assigned to 1 of 2 (Exp. 1) or 3 (Exp. 2) treatment groups based upon the number of Eimeria spp. oocysts per gram (OPG) of feces. In Exp. 1, the kids were fed 1 of 2 pelleted rations ad libitum; 90% SL leaf meal + 10% of a liquid molasses/lignin binder mix and a commercial pellet with 12% crude protein (CP) and 24% acid detergent fiber (n = 12/treatment group, 2 animals/pen). For Exp. 2, treatment groups were fed 1) 90% SL leaf meal pellets from leaves stored 3 years (n = 7), 2) 90% SL pellets from leaf meal stored less than 6 months, (n = 7), and the commercial pellets (n = 6) ad libitum. For both trials, fecal and blood samples were taken from individual animals every 7 days for 28 days to determine OPG and GIN eggs per gram (EPG) and packed cell volume (PCV), respectively. In Exp. 2, feces were scored for consistency (1 = solid pellets, 5 = slurry) as an indicator of coccidiosis. In Exp. 1, EPG (P < 0.001) and OPG (P < 0.01) were reduced by 78.7 and 96.9%, respectively, 7 days after initiation of feeding in goats on the SL pellet diet compared with animals fed the control pellets. The OPG and EPG remained lower in treatment than control animals until the end of the trial. In Exp. 2, goats fed new and old SL leaf meal pellets had 66.2 and 79.2% lower (P < 0.05) EPG and 92.2 and 91.2% lower (P < 0.05) OPG, respectively, than control animals within 7 days, and these differences were maintained or increased throughout the trial. After 4 weeks of pellet feeding in Exp. 2, fecal scores were lower (P < 0.01) in both SL-fed groups compared with control animals, indicating fewer signs of coccidiosis. There was no effect of diet on PCV values throughout either experiment. Dried, pelleted SL has excellent potential as a natural anti-coccidial feed for weaned goats.
Resumo:
High prevalence of anthelmintic-resistant gastrointestinal nematodes (GIN) in goats has increased pressure to find effective, alternative non-synthetic control methods, one of which is adding forage of the high condensed tannin (CT) legume sericea lespedeza (SL; Lespedeza cuneata) to the animal's diet. Previous work has demonstrated good efficacy of dried SL (hay, pellets) against small ruminant GIN, but information is lacking on consumption of fresh SL, particularly during the late summer–autumn period in the southern USA when perennial warm-season grass pastures are often low in quality. A study was designed to determine the effects of autumn (September–November) consumption of fresh SL forage, grass pasture (predominantly bermudagrass, BG; Cynodon dactylon), or a combination of SL + BG forage by young goats [intact male Spanish kids, 9 months old (20.7 ± 1.1 kg), n = 10/treatment group] on their GIN infection status. Three forage paddocks (0.40 ha) were set up at the Fort Valley State University Agricultural Research Station (Fort Valley, GA) for an 8-week trial. The goats in each paddock were supplemented with a commercial feed pellet at 0.45 kg/head/d for the first 4 weeks of the trial, and 0.27 kg/head/d for the final 4 weeks. Forage samples taken at the start of the trial were analyzed for crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) content, and a separate set of SL samples was analyzed for CT in leaves, stems, and whole plant using the benzyl mercaptan thiolysis method. Animal weights were taken at the start and end of the trial, and fecal and blood samples were collected weekly for determination of fecal egg counts (FEC) and packed cell volume (PCV), respectively. Adult GIN was recovered from the abomasum and small intestines of all goats at the end of the experiment for counting and speciation. The CP levels were highest for SL forage, intermediate for SL + BG, and lowest for BG forage samples, while NDF and ADF values were the opposite, with highest levels in BG and lowest in SL forage samples. Sericea lespedeza leaves had more CT than stems (16.0 g vs. 3.3 g/100 g dry weight), a slightly higher percentage of PDs (98% vs. 94%, respectively) and polymers of larger mean degrees of polymerization (42 vs. 18, respectively). There were no differences in average daily gain or blood PCV between the treatment groups, but SL goats had lower FEC (P < 0.05) than the BG or SL + BG forage goats throughout most of the trial. The SL + BG goats had lower FEC than the BG forage animals by the end of the trial (week 8, P < 0.05). The SL goats had lower numbers (P < 0.05) of male Haemonchus contortus and tended to have fewer female (P < 0.10) and total (P < 0.07) H. contortus compared with the BG goats. The predominant GIN in all the goats was Trichostrongylus colubriformis (73% of total GIN). As a low-input forage with activity against pathogenic GIN (H. contortus), SL has a potential to reduce producers’ dependence upon synthetic anthelmintics and also to fill the autumn ‘window’ in good-quality fresh forages for goat grazing in the southern USA.
Resumo:
Scope Epidemiological and clinical studies have demonstrated that the consumption of red haem-rich meat may contribute to the risk of colorectal cancer. Two hypotheses have been put forward to explain this causal relationship, i.e. N-nitroso compound (NOC) formation and lipid peroxidation (LPO). Methods and Results In this study, the NOC-derived DNA adduct O6-carboxymethylguanine (O6-CMG) and the LPO product malondialdehyde (MDA) were measured in individual in vitro gastrointestinal digestions of meat types varying in haem content (beef, pork, chicken). While MDA formation peaked during the in vitro small intestinal digestion, alkylation and concomitant DNA adduct formation was observed in seven (out of 15) individual colonic digestions using separate faecal inocula. From those, two haem-rich meat digestions demonstrated a significantly higher O6-CMG formation (p < 0.05). MDA concentrations proved to be positively correlated (p < 0.0004) with haem content of digested meat. The addition of myoglobin, a haem-containing protein, to the digestive simulation showed a dose–response association with O6-CMG (p = 0.004) and MDA (p = 0.008) formation. Conclusion The results suggest the haem-iron involvement for both the LPO and NOC pathway during meat digestion. Moreover, results unambiguously demonstrate that DNA adduct formation is very prone to inter-individual variation, suggesting a person-dependent susceptibility to colorectal cancer development following haem-rich meat consumption.
Resumo:
Bacteria are associated with all areas of the human body from the skin to the genitourinary, respiratory and gastrointestinal (GI) tracts. The GI tract is the most heavily populated, with the majority of the total bacterial population of humans residing therein. The GI tract has evolved to become a functional organ comprising anatomically distinct areas. The digestive process starts in the oral cavity, then moves through the stomach, small and large intestine and finally the rectum. This chapter summarizes the functions of the human gastrointestinal tract. A main function of the GI microbiota is modulation of the immune system. The chapter focues on the factors influencing composition of the microbiota.